分析 根据椭圆的定义,丨PF丨+丨PF2丨=2a=8,丨AF丨+丨AF2丨=2a=8,则l=丨AF丨+丨PF丨+丨PA丨≤丨AF丨+丨PF丨+丨PF2丨+丨AF2丨=4a=16,即可求得△PAF周长的最大值.
解答
解:椭圆C:$\frac{x^2}{16}+\frac{y^2}{12}=1$,a=4,b=2$\sqrt{2}$,c=2,则左焦点(-2,0)和上顶点(0,2$\sqrt{2}$),
则椭圆的右焦点F2(-2,0),
由椭圆的定义丨PF丨+丨PF2丨=2a=8,丨AF丨+丨AF2丨=2a=8,
∴△PAF周长l:l=丨AF丨+丨PF丨+丨PA丨≤丨AF丨+丨PF丨+丨PF2丨+丨AF2丨=4a=16,
当且仅当AP过F2时△PAF周长取最大值,
∴△PAF周长的最大值16,
故答案为:16.
点评 本题考查椭圆的性质及椭圆的定义,考查计算能力,考查数形结合思想,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{15}}}{6}$ | B. | $\frac{{\sqrt{5}-\sqrt{3}}}{6}$ | C. | $\frac{{2\sqrt{3}-\sqrt{5}}}{6}$ | D. | $\frac{{4-\sqrt{15}}}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{8}{15}$ | B. | $\frac{3}{5}$ | C. | $\frac{3}{4}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 1 | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a | B. | b | C. | $\sqrt{ab}$ | D. | $\frac{a+b}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{7{x^2}}}{16}-\frac{y^2}{12}=1$ | B. | $\frac{y^2}{3}-\frac{x^2}{2}=1$ | C. | ${x^2}-\frac{y^2}{3}=1$ | D. | $\frac{{3{y^2}}}{23}-\frac{x^2}{23}=1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com