精英家教网 > 高中数学 > 题目详情
如图所示,已知点P在正方体ABCD—A′B′C′D′的对角线
BD′上,∠PDA=60°.
(1)求DP与CC′所成角的大小;
(2)求DP与平面AA′D′D所成角的大小.
(1) DP与CC′所成的角为45°(2) DP与平面AA′D′D所成的角为30°
  如图所示,以D为原点,DA为单位长度建立空间直角坐标系D—xyz.

=(1,0,0),=(0,0,1).
连接BD,B′D′.
在平面BB′D′D中,
延长DP交B′D′于H.
="(m,m,1)" (m>0),由已知〈,〉=60°,
·=||||cos〈, 〉,
可得2m=.
解得m=,所以=(,,1).
(1)因为cos〈,〉==,
所以〈,〉=45°,
即DP与CC′所成的角为45°.
(2)平面AA′D′D的一个法向量是=(0,1,0).
因为cos〈,〉==,
所以〈,〉=60°,
可得DP与平面AA′D′D所成的角为30°.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,直三棱柱ABC-A1B1C1底面△ABC中,CA=CB=1,
∠BCA=90°,棱AA1=2,M是A1B1的中点.
(1)求cos()的值;
(2)求证:A1B⊥C1M.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四棱锥中,底面为矩形,分别为的中点.
(1) 求证:
(2) 求证:平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图平面SAC⊥平面ACB,ΔSAC是边长为4的等边三角形,ΔACB为直角三角形,∠ACB=90,BC=,求二面角S-AB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC的中点,F在棱AC上,且AF=3FC.

(1)求证AC⊥平面DEF;
(2)若M为BD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N的位置;若不存在,试说明理由.
(3)求平面ABD与平面DEF所成锐二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正四棱柱ABCD-ABCD中,底面边长为2,侧棱长为4,点E、F分别为棱AB、BC的中点,EF∩BD=G,求点D到平面BEF的距离d。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,正四面体V—ABC的高VD的中点为O,VC的中点为M.
(1)求证:AO、BO、CO两两垂直;

(2)求〈,〉.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是两条不同直线,是两个不同的平面,给出下列命题:
①若,则;②若,则;③若,则;④若,则,其中正确的命题是(   )
A.①②B.②③C.③④D.①③

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若A,B,当取最小值时,的值等于(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案