Èçͼ£¬ÉèÅ×ÎïÏßC1£ºy2=4mx£¨m£¾0£©µÄ×¼ÏßÓëxÖá½»ÓÚF1£¬½¹µãΪF2£»ÒÔF1¡¢F2Ϊ½¹µã£¬ÀëÐÄÂÊe=
1
2
µÄÍÖÔ²C2ÓëÅ×ÎïÏßC1ÔÚxÖáÉÏ·½µÄÒ»¸ö½»µãΪP£®
£¨¢ñ£©µ±m=1ʱ£¬ÇóÍÖÔ²µÄ·½³Ì¼°ÆäÓÒ×¼Ïߵķ½³Ì£»
£¨¢ò£©ÔÚ£¨¢ñ£©µÄÌõ¼þÏ£¬¾­¹ýµãF2µÄÖ±ÏßlÓëÅ×ÎïÏßC1½»ÓÚA1¡¢A2£¬Èç¹ûÒÔÏß¶ÎA1A2Ϊֱ¾¶×÷Ô²£¬ÊÔÅжÏÅ×ÎïÏßC1µÄ×¼ÏßÓëÍÖÔ²C2µÄ½»µãB1¡¢B2ÓëÔ²µÄλÖùØÏµ£»
£¨¢ó£©ÊÇ·ñ´æÔÚʵÊým£¬Ê¹µÃ¡÷PF1F2µÄ±ß³¤ÊÇÁ¬ÐøµÄ×ÔÈ»Êý£¬Èô´æÔÚ£¬Çó³öÕâÑùµÄʵÊým£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ
רÌ⣺¼ÆËãÌâ,Ô²×¶ÇúÏßÖеÄ×îÖµÓ뷶ΧÎÊÌâ
·ÖÎö£º£¨¢ñ£©µ±m=1ʱ£¬Ò×Öªc=1£¬a=2£¬b=
3
£»´Ó¶øÇóÍÖÔ²·½³Ì¼°×¼Ïß·½³Ì£»
£¨¢ò£©ÒÀÌâÒâÉèÖ±ÏßlµÄ·½³ÌΪ£ºx=ky+1£¬k¡ÊR£¬Óëy2=4xÁªÁ¢¿ÉµÃy2-4ky-4=0£»²»·ÁÈ¡B1 (-1£¬
3
2
)
£¬¿ÉÇóµÃ
B1A1
B1A2
¡Ý0£¬¹ÊµãB1ÔÚÔ²ÉÏ»òÔ²Í⣬¹ÊµãB1¡¢B2ÔÚÔ²ÉÏ»òÔ²Í⣻
£¨¢ó£©¼ÙÉè´æÔÚÂú×ãÌõ¼þµÄʵÊým£¬Í¨¹ýµÚ¶þ¶¨Òå¿ÉÖªÈý½ÇÐÎPF1F2µÄ±ß³¤·Ö±ðÊÇ
5
3
m £¬ 
6
3
m £¬ 
7
3
m
£¬´Ó¶øÇó³öm¼´¿É£®
½â´ð£º ½â£º£¨¢ñ£©µ±m=1ʱ£¬F1£¨-1£¬0£©£¬F2£¨1£¬0£©£¬
¹Êc=1£¬ÓÖÓÉÀëÐÄÂÊe=
1
2
Öª£¬
a=2£¬¹Êb=
3
£»
ÔòÍÖÔ²·½³ÌΪ
x2
4
+
y2
3
=1
£¬
ÓÒ×¼Ïß·½³ÌΪx=
a2
c
=4£»
£¨¢ò£©ÒÀÌâÒâÉèÖ±ÏßlµÄ·½³ÌΪ£ºx=ky+1£¬k¡ÊR£¬
½«x=ky+1´úÈëy2=4xµÃ£¬
y2-4ky-4=0£®
ÉèA1£¨x1£¬y1£©£¬A2£¨x2£¬y2£©£¬
ÓÉΤ´ï¶¨ÀíµÃy1+y2=4k£¬y1y2=-4£®
ÓÉÍÖÔ²ºÍÅ×ÎïÏߵĶԳÆÐÔ£¬Ö»ÒªÅжÏB1¡¢B2ÖÐÒ»µã¼´¿É£®
²»·ÁÈ¡B1 (-1£¬
3
2
)
£¬
¡ß
B1A1
=(x1+1£¬y1-
3
2
)£¬
B1A2
=(x2+1£¬y2-
3
2
)
£¬
¡à
B1A1
B1A2
=£¨x1+1£©£¨x2+1£©+£¨y1-
3
2
£©£¨y2-
3
2
£©
=x1x2+£¨x1+x2£©+1+y1y2-
3
2
£¨y1+y2£©+
9
4

=4k2-6k+
9
4
=4£¨k-
3
4
£©2£»
ÒòΪk¡ÊR£¬ÓÚÊÇ
B1A1
B1A2
¡Ý0
£¬
¼´µãB1ÔÚÔ²ÉÏ»òÔ²Í⣬¹ÊµãB1¡¢B2ÔÚÔ²ÉÏ»òÔ²Í⣮
£¨¢ó£©¼ÙÉè´æÔÚÂú×ãÌõ¼þµÄʵÊým£¬
ÓÉÌâÉèÓÐc=m£¬a=2m£¬|F1F2|=2m£®
ÓÖÉè|PF1|=r1£¬|PF2|=r2£¬
ÓÐr1+r2=2a=4m£»
ÉèP£¨x0£¬y0£©£¬
¶ÔÓÚÅ×ÎïÏßC1£¬r2=x0+m£»
¶ÔÓÚÍÖÔ²C2£¬
r2
a2
c
-x0
=e=
1
2
£¬
¼´r2=
1
2
(4m-x0)
£®
ÓÉx0+m=
1
2
(4m-x0)
½âµÃ£¬x0=
2
3
m
£¬
¡àr2=
5
3
m
£¬´Ó¶ø r1=
7
3
m
£®
Òò´Ë£¬Èý½ÇÐÎPF1F2µÄ±ß³¤·Ö±ðÊÇ
5
3
m £¬ 
6
3
m £¬ 
7
3
m
£®
ËùÒÔm=3ʱ£¬ÄÜʹÈý½ÇÐÎPF1F2µÄ±ß³¤ÊÇÁ¬ÐøµÄ×ÔÈ»Êý£®
µãÆÀ£º±¾Ì⿼²éÁËÔ²×¶ÇúÏßµÄλÖùØÏµµÄÓ¦Óã¬Ó¦Óõ½ÁËΤ´ï¶¨Àí¼°ÏòÁ¿£¬»¯¼òºÜÀ§ÄÑ£¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¼ÆË㣺cos
5¦Ð
8
•cos
¦Ð
8
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÕýËÄÃæÌåÀⳤΪ1£¬ÆäÍâ½ÓÇòµÄ±íÃæ»ýΪ£¨¡¡¡¡£©
A¡¢
3
¦Ð
B¡¢¦Ð
C¡¢
3¦Ð
2
D¡¢3¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸ß¶þ£¨1£©°àµÄÒ»¸öÑо¿ÐÔѧϰС×éÔÚÍøÉϲéÖª£¬Ä³ÕäϡֲÎïÖÖ×ÓÔÚÒ»¶¨Ìõ¼þÏ·¢Ñ¿³É¹¦ÂÊΪ
1
3
£¬¸ÃѧϰС×éÓÖ·Ö³ÉÁ½¸öС×é½øÐÐÑéÖ¤ÐÔʵÑ飮
£¨1£©µÚһС×é×öÁË5´ÎÕâÖÖÖ²ÎïÖÖ×ӵķ¢Ñ¿ÊµÑ飨ÿ´Î¾ùÖÖÏÂÒ»Á£ÖÖ×Ó£©£¬ÇóËûÃǵÄʵÑéÖÁÉÙÓÐ3´Î³É¹¦µÄ¸ÅÂÊ£®
£¨2£©µÚ¶þС×é×öÁËÈô¸É´Î·¢Ñ¿ÊµÑ飨ÿ´Î¾ùÖÖÏÂÒ»Á£ÖÖ×Ó£©£¬Èç¹ûÔÚÒ»´ÎʵÑéÖÐÖÖ×Ó·¢Ñ¿³É¹¦¾ÍֹͣʵÑ飬·ñÔò½«¼ÌÐø½øÐÐÏÂÈ¥£¬Ö±µ½ÖÖ×Ó·¢Ñ¿³É¹¦ÎªÖ¹£¬µ«·¢Ñ¿ÊµÑéµÄ´ÎÊý×î¶à²»³¬¹ý4´Î£¬ÇóµÚ¶þ¸öС×éËù×öµÄÖÖ×Ó·¢Ñ¿µÄʵÑé´ÎÊý¦ÎµÄ¸ÅÂÊ·Ö²¼ÁÐºÍÆÚÍû£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÖÐÐÄÔÚÔ­µãµÄ½¹µãÔÚ×ø±êÖáÉϵÄÍÖÔ²¹ýµãM(1£¬
4
3
2
)
£¬N(-
3
2
2
£¬
2
)
£»Çó
£¨1£©ÀëÐÄÂÊe£»
£¨2£©ÍÖÔ²ÉÏÊÇ·ñ´æÔÚP£¨x£¬y£©µ½¶¨µãA£¨a£¬0£©£¨0£¼a£¼3£©¾àÀëµÄ×îСֵΪ1£¿Èô´æÔÚÇóa¼°P×ø±ê£¬Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÖ±ÏßlµÄ·½³ÌΪx=-2£¬ÇÒÖ±ÏßlÓëxÖá½»ÓÚµãM£¬Ô²O£ºx2+y2=1ÓëxÖá½»ÓÚA£¬BÁ½µã£¨Èçͼ£©£®
£¨1£©¹ýMµãµÄÖ±Ïßl1½»Ô²ÓÚP¡¢QÁ½µã£¬ÇÒÔ²¹ÂPQǡΪԲÖܵÄ
1
4
£¬ÇóÖ±Ïßl1µÄ·½³Ì£»
£¨2£©ÇóÒÔlΪ׼Ïߣ¬ÖÐÐÄÔÚÔ­µã£¬ÇÒÓëÔ²OÇ¡ÓÐÁ½¸ö¹«¹²µãµÄÍÖÔ²·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýy=x3+ax2+bx+27ÔÚx=-1Óм«´óÖµ£¬ÔÚx=3Óм«Ð¡Öµ£¬Ôòa=
 
£¬b=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑ֪˫ÇúÏߵıê×¼·½³ÌΪ
x2
a2
-
y2
b2
=1
£¬ÀëÐÄÂÊΪ
3
£¬ÇÒË«ÇúÏß¹ýµã£¨
2
£¬
2
£©£¬
£¨1£©ÇóË«ÇúÏߵıê×¼·½³Ì£»
£¨2£©¹ýµãP£¨2£¬1£©×÷Ò»ÌõÖ±ÏßlÓëË«ÇúÏß½»ÓÚA£¬BÁ½µãʹPΪABµÄÖе㣬ÇóÖ±ÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

É躯Êýf£¨x£©=
1£¬1¡Üx¡Ü2
x-1£¬2£¼x¡Ü3
£¬g£¨x£©=f£¨x£©-ax£¬x¡Ê[1£¬3]£¬ÆäÖÐa¡ÊR£¬¼Çº¯Êýg£¨x£©µÄ×î´óÖµÓë×îСֵµÄ²îΪh£¨a£©£®
£¨¢ñ£©Çóº¯Êýh£¨a£©µÄ½âÎöʽ£»
£¨¢ò£©»­³öº¯Êýy=h£¨x£©µÄͼÏó²¢Ö¸³öh£¨x£©µÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸