【题目】已知圆x2+y2-4ax+2ay+20a-20=0.
(1)求证:对任意实数a,该圆恒过一定点;
(2)若该圆与圆x2+y2=4相切,求a的值.
【答案】(1)见解析(2) a=1±
.
【解析】试题分析:(1)将
分离,可得(x2+y2-20)+a(-4x+2y+20)=0,对任意实数
成立,则
,即可求出定点坐标;(2)将圆的方程化为标准方程,由题意可将两圆关系分为外切和内切,分别求出
的值.
试题解析:(1)证明:圆的方程可整理为(x2+y2-20)+a(-4x+2y+20)=0,
此方程表示过圆x2+y2-20=0和直线-4x+2y+20=0交点的圆系.
由
得![]()
∴已知圆恒过定点(4,-2).
(2)圆的方程可化为(x-2a)2+(y+a)2=5(a-2)2.
①当两圆外切时,d=r1+r2,
即
,
解得a=
或a=
(舍去);
②当两圆内切时,d=|r1-r2|,
即
,
解得a=
或a=
(舍去).
综上所述,a=
.
科目:高中数学 来源: 题型:
【题目】已知曲线Cx2﹣y2=1及直线l:y=kx﹣1.
(1)若l与C左支交于两个不同的交点,求实数k的取值范围;
(2)若l与C交于A、B两点,O是坐标原点,且△AOB的面积为
,求实数k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足a1+3a2+32a3+…+3n﹣1an=
,n∈N+ .
(1)求数列{an}的通项公式;
(2)设anbn=n,求数列{bn}的前n项和Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某研究机构对高三学生的记忆力x和判断力y进行统计分析,所得数据如表所示:
x | 6 | 8 | 10 | 12 |
y | 2 | 3 | 5 | 6 |
画出上表数据的散点图如图所示
(其中
,
=
﹣
)![]()
(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程
=
x+
.
(2)试根据(1)求出的线性回归方程,预测记忆力为9的学生的判断力
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在矩形ABCD中,
,点
分别在边
上,且
,
交
于点
.现将
沿
折起,使得平面
平面
,得到图2.
(Ⅰ)在图2中,求证:
;
(Ⅱ)若点
是线段
上的一动点,问点
在什么位置时,二面角
的余弦值为
.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了了解小学生近视情况,决定随机从同一个学校二年级到四年级的学生中抽取60名学生检测视力,其中二年级共有学生2400人,三年级共有学生2000人,四年级共有学生1600人,则应从三年级学生中抽取的学生人数为( )
A.24
B.20
C.16
D.18
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com