精英家教网 > 高中数学 > 题目详情
18.函数y=f(x)是奇函数且周期为3,f(-1)=1,则f(2017)=-1.

分析 y=f(x)是奇函数,即f(-x)=-f(x),求得f(1)=-1,根据函数的周期为3,f(2017)=f(672×3+1)=f(1)=-1.

解答 解:y=f(x)是奇函数,即f(-x)=-f(x),
∴f(1)=-f(-1)=-1,
由y=f(x)周期为3,
f(2017)=f(672×3+1)=f(1)=-1,
故答案为:-1.

点评 本题考查函数的性质,考查函数的周期性和函数的奇偶性的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知向量$\overrightarrow{m}$=(2,4),|$\overrightarrow{n}$|=$\sqrt{5}$,若$\overrightarrow{m}$,$\overrightarrow{n}$间的夹角为$\frac{π}{3}$,则|2$\overrightarrow{m}$-3$\overrightarrow{n}$|=$\sqrt{65}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知全集U=R,集合A={x|x<-4,或x>2},B={x|-1≤2x-1-2≤6}.
(1)求A∩B、(∁UA)∪(∁UB);
(2)若集合M={x|2k-1≤x≤2k+1}是集合A的子集,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.半径为4的球的表面积为64π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设Sn为数列{an}的前项和,已知a1≠0,2an-a1=S1•Sn,则数列{nan}的前n项和为(n-1)×2n+1.n∈N+

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合M={x|9x-4•3x+1+27=0},N={x|log2(x+1)+log2x=log26},则M、N的关系是(  )
A.M?NB.N?MC.M=ND.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.定义$({\begin{array}{l}{{x_{n+1}}}\\{{y_{n+1}}}\end{array}})$=$({\begin{array}{l}1&0\\ 1&1\end{array}})({\begin{array}{l}{x_n}\\{{y_n}}\end{array}})$为向量$\overrightarrow{O{P_n}}$=(xn,yn)到向量$\overrightarrow{O{P_{n+1}}}$=(xn+1,yn+1)的一个矩阵变换,其中O是坐标原点,n∈N*,已知$\overrightarrow{O{P_1}}$=(2,0),则$\overrightarrow{O{P_{2016}}}$的坐标为(2,4030).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.若集合A={x|ax2-3x+2=0,a∈R}有且仅有两个子集,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知$\overrightarrow{m}$=(3,a-1),$\overrightarrow{n}$=(a,-2),若$\overrightarrow{m}$⊥$\overrightarrow{n}$,则a的值为(  )
A.$\frac{2}{5}$B.2C.-2D.3

查看答案和解析>>

同步练习册答案