精英家教网 > 高中数学 > 题目详情
10.定义$({\begin{array}{l}{{x_{n+1}}}\\{{y_{n+1}}}\end{array}})$=$({\begin{array}{l}1&0\\ 1&1\end{array}})({\begin{array}{l}{x_n}\\{{y_n}}\end{array}})$为向量$\overrightarrow{O{P_n}}$=(xn,yn)到向量$\overrightarrow{O{P_{n+1}}}$=(xn+1,yn+1)的一个矩阵变换,其中O是坐标原点,n∈N*,已知$\overrightarrow{O{P_1}}$=(2,0),则$\overrightarrow{O{P_{2016}}}$的坐标为(2,4030).

分析 先利用矩阵与向量乘法运算,得出$\left\{\begin{array}{l}{{x}_{n+1}={x}_{n}}\\{{y}_{n+1}={x}_{n}+{y}_{n}}\end{array}\right.$,由$\overrightarrow{O{P_1}}$=(2,0),可得yn+1-yn=2,向量的横坐标不变,纵坐标构成以0为首项,2为公差的等差数列,进而可求向量的坐标.

解答 解:由题意可知:$\left\{\begin{array}{l}{{x}_{n+1}={x}_{n}}\\{{y}_{n+1}={x}_{n}+{y}_{n}}\end{array}\right.$,
∴yn+1-yn=xn,xn=x1
由$\overrightarrow{O{P_1}}$=(2,0),
yn+1-yn=2,
向量的横坐标不变,纵坐标构成以0为首项,2为公差的等差数列,
yn=2(n-1),
∴y2016=2×2015=4030,
$\overrightarrow{O{P_{2016}}}$的坐标(2,4030),
故答案为:(2,4030).

点评 本题的考点是矩阵与向量乘法的意义,考查等差数列通项公式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.(理)定积分${∫}_{0}^{5}$$\sqrt{25-{x}^{2}}$dx的值为$\frac{25π}{4}$ 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,角A,B,C的对边分别为a,b,c,已知2(tanA+tanB)=$\frac{sinA+sinB}{cosAcosB}$.
(Ⅰ)证明:a、c、b成等差数列;
(Ⅱ)求cosC的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数y=f(x)是奇函数且周期为3,f(-1)=1,则f(2017)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=|2x-a|+2;
(1)若不等式f(x)<6的解集为(-1,3),求a的值;
(2)在(1)的条件下,对任意的x∈R,都有f(x)>t-f(-x),求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$是同一平面内的三个向量,其中$\overrightarrow a$=(1,2).
(1)若|${\overrightarrow c}$|=2$\sqrt{5}$,且$\overrightarrow c$∥$\overrightarrow a$,求$\overrightarrow c$的坐标
(2)若|${\overrightarrow b}$|=$\frac{{\sqrt{5}}}{2}$,且$\overrightarrow a$+2$\overrightarrow b$与$\overrightarrow a$-$\overrightarrow b$垂直,求$\overrightarrow a$与$\overrightarrow b$的夹角θ

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设x>0,则$\frac{{{x^2}+x+3}}{x+1}$的最小值为2$\sqrt{3}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.${∫}_{-1}^{1}$($\sqrt{4-{x}^{2}}$+x3)dx=$\sqrt{3}+\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设集合A={1,1+d,1+2d},B={1,q,q2},若A=B,求d与q的值.

查看答案和解析>>

同步练习册答案