精英家教网 > 高中数学 > 题目详情
20.设集合A={1,1+d,1+2d},B={1,q,q2},若A=B,求d与q的值.

分析 由元素的互异性可知:d≠0,q≠±1,a≠0,而A=B可得$\left\{\begin{array}{l}{1+d=q}\\{1+2d={q}^{2}}\end{array}\right.$①或$\left\{\begin{array}{l}{1+d={q}^{2}}\\{1+2d=q}\end{array}\right.$②.解出方程组即可.

解答 解:由元素的互异性可知:d≠0,q≠±1,a≠0,而A=B.
∴$\left\{\begin{array}{l}{1+d=q}\\{1+2d={q}^{2}}\end{array}\right.$①或$\left\{\begin{array}{l}{1+d={q}^{2}}\\{1+2d=q}\end{array}\right.$②..
由方程组①解得$\left\{\begin{array}{l}{d=0}\\{q=1}\end{array}\right.$,应舍去;
由方程组②解得$\left\{\begin{array}{l}{d=0}\\{q=1}\end{array}\right.$(应舍去)或$\left\{\begin{array}{l}{d=-\frac{3}{4}}\\{q=-\frac{1}{2}}\end{array}\right.$.
综上可知:d=-$\frac{3}{4}$,q=-$\frac{1}{2}$.

点评 本题考查了集合元素的互异性、集合相等,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.定义$({\begin{array}{l}{{x_{n+1}}}\\{{y_{n+1}}}\end{array}})$=$({\begin{array}{l}1&0\\ 1&1\end{array}})({\begin{array}{l}{x_n}\\{{y_n}}\end{array}})$为向量$\overrightarrow{O{P_n}}$=(xn,yn)到向量$\overrightarrow{O{P_{n+1}}}$=(xn+1,yn+1)的一个矩阵变换,其中O是坐标原点,n∈N*,已知$\overrightarrow{O{P_1}}$=(2,0),则$\overrightarrow{O{P_{2016}}}$的坐标为(2,4030).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知集合A={y|y=log2x,x≥4},B={y|y=($\frac{1}{2}$)x,-1≤x≤0}.
(1)求A∩B;
(2)若集合C={x|a≤x≤2a-1},且C∪B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知$\overrightarrow{m}$=(3,a-1),$\overrightarrow{n}$=(a,-2),若$\overrightarrow{m}$⊥$\overrightarrow{n}$,则a的值为(  )
A.$\frac{2}{5}$B.2C.-2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若f(x)=$\frac{x^2-1}{\sqrt{x+1}}$,g(x)=$\frac{\sqrt{x+1}}{x-1}$,则f(x)•g(x)=x+1(x>-1且x≠1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知平面外一条直线上有两个不同的点到这个平面的距离相等,则这条直线与该平面的位置关系是平行或相交.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=x2(x∈R)是(  )
A.奇函数B.偶函数
C.非奇非偶函数D.奇函数同时也是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知集合E={x||x-1|≥m},F=$\{x|\frac{10}{x+6}>1\}$.
(1)若m=4,求(∁RE)∩F;
(2)若E∩F=∅,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列有关命题的说法正确的是(  )
A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”
B.“x=-1”是“x2-5x-6=0”的必要不充分条件
C.若“p或q”为真命题,则p,q中至少有一个为真命题
D.命题“若x=y,则cosx=cosy”的逆否命题为假命题

查看答案和解析>>

同步练习册答案