分析 可令t=x+1(t>1),则$\frac{{{x^2}+x+3}}{x+1}$=$\frac{(t-1)^{2}+t-1+3}{t}$=t+$\frac{3}{t}$-1,再由基本不等式可得最小值.
解答 解:由x>0,可得x+1>1,
可令t=x+1(t>1),
即x=t-1,
则$\frac{{{x^2}+x+3}}{x+1}$=$\frac{(t-1)^{2}+t-1+3}{t}$
=t+$\frac{3}{t}$-1≥2$\sqrt{t•\frac{3}{t}}$-1=2$\sqrt{3}$-1.
当且仅当t=$\sqrt{3}$,即x=$\sqrt{3}$-1,取得最小值.
故答案为:2$\sqrt{3}$-1.
点评 本题考查函数最值的求法,注意运用换元法和基本不等式,考查运算化简能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com