精英家教网 > 高中数学 > 题目详情
14.各项均为正数的等差数列{an}前n项和为Sn,首项a1=3,数列{bn} 为等比数列,首项b1=1,且b2S2=64,b3S3=960.
(Ⅰ)求an和bn
(Ⅱ)设f(n)=$\frac{{a}_{n}-1}{{S}_{n}+100}$(n∈N*),求f(n)最大值及相应的n的值.

分析 (Ⅰ)设出等差数列的公差和等比数列的公比,由已知列式求得等差数列的公差和等比数列的公比,则an和bn可求;
(Ⅱ)把等差数列{an}的通项和前n项和为Sn代入f(n)=$\frac{{a}_{n}-1}{{S}_{n}+100}$,整理后利用基本不等式求得f(n)最大值及相应的n的值.

解答 解:(Ⅰ)设等差数列{an}的公差为d,等比数列{bn}的公比为q,则d>0,
∴${a}_{n}=3+(n-1)d,{b}_{n}={q}^{n-1}$,
依题意:$\left\{\begin{array}{l}{{b}_{3}{S}_{3}=(9+3d){q}^{2}=960}\\{{b}_{2}{S}_{2}=(6+d)q=64}\end{array}\right.$,解得$\left\{\begin{array}{l}{d=2}\\{q=8}\end{array}\right.$或$\left\{\begin{array}{l}{d=-\frac{6}{5}}\\{q=\frac{40}{3}}\end{array}\right.$(舍).
∴an=2n+1,${b}_{n}={8}^{n-1}$;
(Ⅱ)∵Sn=n(n+2),
∴f(n)=$\frac{{a}_{n}-1}{{S}_{n}+100}$=$\frac{2n}{{n}^{2}+2n+100}=\frac{2}{n+\frac{100}{n}+2}$≤$\frac{2}{2\sqrt{n•\frac{100}{n}}+2}=\frac{1}{11}$.
当且仅当n=$\frac{100}{n}$,即n=10时取等号.
∴当n=10时,所求最小值为$\frac{1}{11}$.

点评 本题考查等差数列与等比数列的通项公式,考查了数列的函数特性,训练了利用基本不等式求最值,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.若函数f(x)=x2+bx+c满足f(-3)=f(1),则 (  )
A.f(1)>c>f(-1)B.f(1)<c<f(-1)C.c>f(-1)>f(1)D.c<f(-1)<f(1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=|2x-a|+2;
(1)若不等式f(x)<6的解集为(-1,3),求a的值;
(2)在(1)的条件下,对任意的x∈R,都有f(x)>t-f(-x),求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设x>0,则$\frac{{{x^2}+x+3}}{x+1}$的最小值为2$\sqrt{3}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18000cm2,四周空白的宽度为10cm,两栏之间的中缝空白的宽度为5cm.
(1)设矩形栏目宽度为xcm,求矩形广告面积S(x)的表达式
(2)怎样确定广告的高与宽的尺寸(单位:cm),能使矩形广告面积最小?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.${∫}_{-1}^{1}$($\sqrt{4-{x}^{2}}$+x3)dx=$\sqrt{3}+\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若log2a+log2b=0(a>0,b>0,a≠1,b≠1),则函数f(x)=ax与g(x)=-logbx的图象关于(  )
A.直线y=x对称B.x轴对称C.y轴对称D.原点对称

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设x,y满足$\left\{\begin{array}{l}2x+y≥4\\ x-y≥1\\ x-2y≤2\end{array}\right.$,则z=x+y(  )
A.有最小值2,最大值3B.有最小值2,无最大值
C.有最大值3,无最小值D.既无最小值,也无最大值

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知a1=1,an-2an-1=2n,则{an}的通项公式为(2n-1)×2n-1

查看答案和解析>>

同步练习册答案