精英家教网 > 高中数学 > 题目详情
4.若函数f(x)=x2+bx+c满足f(-3)=f(1),则 (  )
A.f(1)>c>f(-1)B.f(1)<c<f(-1)C.c>f(-1)>f(1)D.c<f(-1)<f(1)

分析 利用f(-3)=f(1),提出二次函数的对称轴,结合开口方向,判断选项即可.

解答 解:函数f(x)=x2+bx+c,开口向上,满足f(-3)=f(1),函数的对称轴为:x=-1.
x∈[-1,+∞)函数是增函数.
x=-1时函数取得最小值.
f(0)=c.
所以:f(1)>c>f(-1).
故选:A.

点评 本题考查二次函数的简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=cos(x+$\frac{π}{4}$)sinx,则函数f(x)的图象(  )
A.最小正周期为T=2πB.关于点($\frac{π}{8}$,-$\frac{\sqrt{2}}{4}$)对称
C.在区间(0,$\frac{π}{8}$)上为减函数D.关于直线x=$\frac{π}{8}$对称

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.给出以下命题:
①双曲线$\frac{y^2}{2}$-x2=1的渐近线方程为y=±$\sqrt{2}$x;
②命题P:?x∈R+,sinx+$\frac{1}{sinx}$≥1是真命题;
③已知线性回归方程为$\widehaty$=3+2x,当变量x增加2个单位,其预报值平均增加4个单位;
④设随机变量ξ服从正态分布N(0,1),若P(ξ>1)=0.2,则P(-1<ξ<0)=0.6;
则正确命题的序号为①③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.对实数a和b,定义运算“⊕”:a⊕b=$\left\{\begin{array}{l}a,a-b≤1\\ b,a-b>1\end{array}$.若函数f(x)=(x2-2)⊕(x-x2)-c,x∈R有两个零点,则实数c的取值范围为$({-∞,-2}]∪({-1,-\frac{3}{4}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)=lnx+3x-10的零点所在的大致范围是(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知全集U=R,集合A={x|x<-4,或x>2},B={x|-1≤2x-1-2≤6}.
(1)求A∩B、(∁UA)∪(∁UB);
(2)若集合M={x|2k-1≤x≤2k+1}是集合A的子集,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,四边形ABCD的四个顶点在半径为2的圆O上,若∠BAD=$\frac{π}{3}$,CD=2,则BC=(  )
A.2B.4C.$\sqrt{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设Sn为数列{an}的前项和,已知a1≠0,2an-a1=S1•Sn,则数列{nan}的前n项和为(n-1)×2n+1.n∈N+

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.各项均为正数的等差数列{an}前n项和为Sn,首项a1=3,数列{bn} 为等比数列,首项b1=1,且b2S2=64,b3S3=960.
(Ⅰ)求an和bn
(Ⅱ)设f(n)=$\frac{{a}_{n}-1}{{S}_{n}+100}$(n∈N*),求f(n)最大值及相应的n的值.

查看答案和解析>>

同步练习册答案