精英家教网 > 高中数学 > 题目详情
6.若log2a+log2b=0(a>0,b>0,a≠1,b≠1),则函数f(x)=ax与g(x)=-logbx的图象关于(  )
A.直线y=x对称B.x轴对称C.y轴对称D.原点对称

分析 利用对数的运算性质可得:ab=1,再利用对数的运算性质、互为反函数的图象的性质即可得出.

解答 解:∵log2a+log2b=0(a>0,b>0,a≠1,b≠1),
∴ab=1,
则函数f(x)=ax与g(x)=-logbx=-$lo{g}_{\frac{1}{a}}x$=logax的图象关于直线y=x对称.
故选:A.

点评 本题考查了互为反函数的图象的性质、对数的运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.如图,四边形ABCD的四个顶点在半径为2的圆O上,若∠BAD=$\frac{π}{3}$,CD=2,则BC=(  )
A.2B.4C.$\sqrt{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.将一张纸沿直线l对折一次后,点A(0,4)与点B(8,0)重叠,点C(6,8)与点D(m,n)重叠.
(1)求直线l的方程;
(2)求m+n的值;
(3)直线l上是否存在一点P,使得||PB|-|PC||存在最大值,如果存在,请求出最大值,以及此时点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.各项均为正数的等差数列{an}前n项和为Sn,首项a1=3,数列{bn} 为等比数列,首项b1=1,且b2S2=64,b3S3=960.
(Ⅰ)求an和bn
(Ⅱ)设f(n)=$\frac{{a}_{n}-1}{{S}_{n}+100}$(n∈N*),求f(n)最大值及相应的n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设α、β、γ为三个不同的平面,m、n是两条不同的直线,在命题“α∩β=m,n?γ,且________,则m∥n”中的横线处填入下列三组条件中的一组,使该命题为真命题.
①α∥γ,n?β;②m∥γ,n∥β;③n∥β,m?γ.可以填入的条件有(  )
A.①或③B.①或②C.②或③D.①或②或③

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知集合A={y|y=log2x,x≥4},B={y|y=($\frac{1}{2}$)x,-1≤x≤0}.
(1)求A∩B;
(2)若集合C={x|a≤x≤2a-1},且C∪B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知集合A={x|$\frac{1}{3}$≤($\frac{1}{3}$)x-1≤9},集合B={x|log2x<3},集合C={x|x2-(2a+1)x+a2+a≤0},U=R
(1)求集合A∩B,(∁UB)∪A;
(2)若A∪C=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若f(x)=$\frac{x^2-1}{\sqrt{x+1}}$,g(x)=$\frac{\sqrt{x+1}}{x-1}$,则f(x)•g(x)=x+1(x>-1且x≠1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.一个几何体的三视图如图所示,则这个几何体的体积为(  )
A.$\frac{\sqrt{3}}{3}$B.$\sqrt{3}$C.$\frac{2\sqrt{3}}{3}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步练习册答案