精英家教网 > 高中数学 > 题目详情
右图为一组合体,其底面为正方形,平面,且

(Ⅰ)求证:平面
(Ⅱ)求四棱锥的体积;
(Ⅲ)求该组合体的表面积.
(1)证明过程详见解析;(2)2;(3).

试题分析:本题主要考查线线垂直、平行的判定、线面垂直的判定、几何体的体积和表面积的计算,考查空间想象能力、推理论证能力和运算能力.第一问,利用线面平行的判定得出平面平面,所以可得到平面平面,所以利用面面平行的性质得证结论;第二问,利用线面垂直得到线线垂直,又因为,所以得到线面垂直,所以是所求锥体的高,利用梯形面积公式求底面的面积,再利用体积公式求体积;第三问,利用已知的边的关系和长度,可以求出组合体中每一条边的长度,从而求出每一个面的面积,最后求和加在一起即可.
试题解析:(Ⅰ)∵平面平面
平面
同理可证:平面
平面平面,且
∴平面平面
又∵平面,∴平面
(Ⅱ)∵平面平面


平面

∴四棱锥的体积
(Ⅲ)∵

又∵
∴组合体的表面积为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥的底面为矩形,且,,,

(Ⅰ)平面PAD与平面PAB是否垂直?并说明理由;
(Ⅱ)求直线PC与平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直四棱柱ABCD-A1B1C1D1中,DB=BC,DB⊥AC,点M是棱BB1上一点.

(1)求证:B1D1∥平面A1BD;
(2)求证:MD⊥AC;
(3)试确定点M的位置,使得平面DMC1⊥平面CC1D1D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,正方体的棱长为,动点P在对角线上,过点P作垂直于的平面,记这样得到的截面多边形(含三角形)的周长为y,设x,则当时,函数的值域为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正方体中,,分别为棱,的中点,在平面内且与平面平行的直线(   )
A.有无数条B.有2条C.有1条D.不存在

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列命题中错误的是(      )
A.如果平面,那么平面内一定存在直线平行于平面
B.如果平面α不垂直于平面,那么平面内一定不存在直线垂直于平面
C.如果平面,平面,那么
D.如果平面,那么平面内所有直线都垂直于平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过两平行平面α、β外的点P两条直线AB与CD,它们分别交α于A、C两点,交β于B、D两点,若PA=6,AC=9,PB=8,则BD的长为_______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正方体中,分别是的中点,则异面直线所成角的大小是(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在正方体ABCD﹣A1B1C1D1中,M,N分别是BC1,CD1的中点,则下列说法错误的是(  )
A.MN与CC1垂直B.MN与AC垂直C.MN与BD平行D.MN与A1B1平行

查看答案和解析>>

同步练习册答案