【题目】2020年春节期间,全国人民都在抗击“新型冠状病毒肺炎”的斗争中.当时武汉多家医院的医用防护物资库存不足,某医院甚至面临断货危机,南昌某生产商现有一批库存的医用防护物资,得知消息后,立即决定无偿捐赠这批医用防护物资,需要用A、B两辆汽车把物资从南昌紧急运至武汉.已知从南昌到武汉有两条合适路线选择,且选择两条路线所用的时间互不影响.据调查统计2000辆汽车,通过这两条路线从南昌到武汉所用时间的频数分布表如下:
所用的时间(单位:小时) |
|
|
|
|
路线1的频数 | 200 | 400 | 200 | 200 |
路线2的频数 | 100 | 400 | 400 | 100 |
假设汽车A只能在约定交货时间的前5小时出发,汽车B只能在约定交货时间的前6小时出发(将频率视为概率).为最大可能在约定时间送达这批物资,来确定这两车的路线.
(1)汽车A和汽车B应如何选择各自的路线.
(2)若路线1、路线2的“一次性费用”分别为3.2万元、1.6万元,且每车医用物资生产成本为40万元(其他费用忽略不计),以上费用均由生产商承担,作为援助金额的一部分.根据这两辆车到达时间分别计分,具体规则如下(已知两辆车到达时间相互独立,互不影响):
到达时间与约定时间的差x(单位:小时) |
|
|
|
该车得分 | 0 | 1 | 2 |
生产商准备根据运输车得分情况给出现金排款,两车得分和为0,捐款40万元,两车得分和每增加1分,捐款增加20万元,若汽车A、B用(1)中所选的路线运输物资,记该生产商在此次援助活动中援助总额为Y(万元),求随机变量Y的期望值,(援助总额
一次性费用
生产成本
现金捐款总额)
【答案】(1)汽车A选择路线1,汽车B选择路线2;(2)138.8
.
【解析】
(1)由题目中的频数分布表列出频率分布表,求出汽车
在约定交货时间前5(6)小时出发选择路线1、2将物资运往武汉且在约定交货时间前到达的概率,选择概率较大的路线;
(2)设
表示汽车A选择路线1时的得分,
表示汽车B选择路线2时的得分,分别求出
,
的分布列,再求出
的分布列,求出
,即可求出
.
(1)频率分布表如下:
所用的时间(单位:小时) |
|
|
|
|
路线1的频率 | 0.2 | 0.4 | 0.2 | 0.2 |
路线2的频率 | 0.1 | 0.4 | 0.4 | 0.1 |
设
,
分别表示汽车
在约定交货时间前5小时出发选择路线1、2将物资运往武汉且在约定交货时间前到达;
、
分别表示汽车
在约定交货前6小时出发选择路线1、2将物资运往武汉且在约定交货时间前到达;
,
,
,
,
所以汽车A选择路线1,汽车B选择路线2.
(2)设
表示汽车A选择路线1时的得分,
表示汽车B选择路线2时的得分,
,
的分布列分别是:
| 0 | 1 | 2 | |||
P | 0.6 | 0.2 | 0.2 | |||
| 0 | 1 | ||||
P | 0.9 | 0.1 | ||||
设![]()
则X的分布列如下:
| 0 | 1 | 2 | 3 |
| 0.54 | 0.24 | 0.2 | 0.02 |
,
所以
(万元)
所以援助总额的期望值为138.8
.
科目:高中数学 来源: 题型:
【题目】已知动点
到点
的距离比到直线
的距离小
,设点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)过曲线
上一点
(
)作两条直线
,
与曲线
分别交于不同的两点
,
,若直线
,
的斜率分别为
,
,且
.证明:直线
过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知曲线
与曲线
,(
为参数).以坐标原点为极点,
轴的正半轴为极轴建立极坐标系.
(1)写出曲线
,
的极坐标方程;
(2)在极坐标系中,已知
与
,
的公共点分别为
,
,
,当
时,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的离心率为
,点
,
,
分别是椭圆
的左、右焦点,
为等腰三角形.
(Ⅰ)求椭圆
的方程;
(Ⅱ)过左焦点
作直线
交椭圆于
两点,其中![]()
,另一条过
的直线
交椭圆于
两点(不与
重合),且
点不与点
重合. 过
作
轴的垂线分别交直线
,
于
,
.
①求
点坐标; ②求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
的零点构成一个公差为
的等差数列,把函数
的图象沿
轴向右平移
个单位,得到函数
的图象.关于函数
,下列说法正确的是( )
A. 在
上是增函数B. 其图象关于直线
对称
C. 函数
是偶函数D. 在区间
上的值域为![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,直线
的参数方程为
(
为参数).以原点
为极点,以
轴为非负半轴为极轴建立极坐标系,两坐标系相同的长度单位.圆
的方程为
被圆
截得的弦长为
.
(Ⅰ)求实数
的值;
(Ⅱ)设圆
与直线
交于点
,若点
的坐标为
,且
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
,
,其焦距为
,点E为椭圆的上顶点,且
.
(1)求椭圆C的方程;
(2)设圆
的切线l交椭圆C于A,B两点(O为坐标原点),求证
;
(3)在(2)的条件下,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】春节期间爆发的新型冠状病毒(COVID-19)是新中国成立以来感染人数最多的一次疫情.一个不知道自己已感染但处于潜伏期的甲从疫区回到某市过春节,回到家乡后与朋友乙、丙、丁相聚过,最终乙、丙、丁也感染了新冠病毒.可以肯定的是乙受甲感染的,丙是受甲或乙感染的,假设他受甲和受乙感染的概率分别是
和
.丁是受甲、乙或丙感染的,假设他受甲、乙和丙感染的概率分别是
、
和
.在这种假设之下,乙、丙、丁中直接受甲感染的人数为
.
(1)求
的分布列和数学期望;
(2)该市在发现在本地出现新冠病毒感染者后,迅速采取应急措施,其中一项措施是各区必须每天及时,上报新增疑似病例人数.
区上报的连续
天新增疑似病例数据是“总体均值为
,中位数
”,
区上报的连续
天新增疑似病例数据是“总体均值为
,总体方差为
”.设
区和
区连续
天上报新增疑似病例人数分别为
和
,
和
分别表示
区和
区第
天上报新增疑似病例人数(
和
均为非负).记
,
.
①试比较
和
的大小;
②求
和
中较小的那个字母所对应的
个数有多少组?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com