分析 设点P(x,$\frac{1}{x}$)(x>0),利用两点间的距离公式可得|PA|,利用基本不等式和二次函数的单调性即可得出a的值.
解答 解:设点P(x,$\frac{1}{x}$)(x>0),则|PA|=$\sqrt{(x-a)^{2}+(\frac{1}{x}-a)^{2}}$,
令y=x+$\frac{1}{x}$,|PA|=$\sqrt{{t}^{2}-2at+2{a}^{2}-2}$
∵x>0,∴t≥2,
令g(t)=t2-2at+2a2-2=(t-a)2+a2-2,
①当a≤2时,t=a时g(t)取得最小值g(2)=2-4a+2a2=8,解得a=-1;
②当a>2时,g(t)在区间[2,a)上单调递减,在(a,+∞)单调递增,∴t=a,g(t)取得最小值g(a)=
a2-2,∴a2-2=8,解得a=$\sqrt{10}$.
综上可知:a=-1或$\sqrt{10}$.
点评 本题综合考查了两点间的距离公式、基本不等式的性质、二次函数的单调性等基础知识和基本技能,考查了分类讨论的思想方法、推理能力和计算能力.
科目:高中数学 来源: 题型:选择题
| A. | x2-2 | B. | x2+$\frac{1}{{x}^{2}}$ | C. | x2+2 | D. | x2-$\frac{1}{{x}^{2}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)≥3(x∈[1,2]) | B. | f(x)≤4(x∈[1,2]) | ||
| C. | f(x)在x∈[1,2]上单调递增 | D. | f(x)在x∈[1,2]上是减函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | log43<30.4<0.43 | B. | log43<0.43<30.4 | C. | 0.43<30.4<log43 | D. | 0.43<log43<30.4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若a2+b2≠0,则a≠0,b≠0 | B. | 若a2+b2≠0,则a≠0或b≠0 | ||
| C. | 若a2+b2=0,则a≠0,b≠0 | D. | 若a2+b2=0,则a≠0或b≠0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com