精英家教网 > 高中数学 > 题目详情
7.如果在区间[1,3]上,函数f(x)=x2+px+q与g(x)=2x+$\frac{1}{{x}^{2}}$在同一点取得相同的最小值,那么下列说法不对的是(  )
A.f(x)≥3(x∈[1,2])B.f(x)≤4(x∈[1,2])
C.f(x)在x∈[1,2]上单调递增D.f(x)在x∈[1,2]上是减函数

分析 先利用基本不等式求得函数g(x)的最小值,及此时x的值,进而根据二次函数的性质列方程求得p和q,最后根据二次函数的性质求得函数在区间上的单调性和最值,即可得到结论.

解答 解:由于g(x)=2x+$\frac{1}{{x}^{2}}$=x+x+$\frac{1}{{x}^{2}}$≥3$\root{3}{x•x•\frac{1}{{x}^{2}}}$=3,
当x=1时取得最小值3,
∴对于函数f(x),当x=1时,函数有最小值3,
∴$\left\{\begin{array}{l}{1+p+q=3}\\{-\frac{p}{2}=1}\end{array}\right.$,
求得p=-2,q=4,
∴f(x)=x2-2x+4=(x-1)2+3,
∴函数f(x)的对称轴为x=1,开口向上,
∴在区间[1,2]上,函数单调递增,且最小值为3,最大值为f(2)=4,
对照选项,可得A,B,C正确,D错误.
故选D.

点评 本题主要考查了基本不等式的应用,二次函数的性质.对于二次函数的对称轴,顶点位置,应能熟练应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=$\left\{\begin{array}{l}{-丨x+1丨+3,x≤0}\\{f(x-4)+2,x>0}\end{array}\right.$,若方程f(x)-3=kx有四个不同的实数解,则实数k的取值范围是($\frac{4}{7}$,$\frac{2}{3}$)∪{$\frac{1}{4}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.参数方程$\left\{\begin{array}{l}{x=2cosθ-3}\\{y=2sinθ+1}\end{array}\right.$(θ为参数)化为普通方程是(x+3)2+(y-1)2=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知以抛物线x2=2py(p>0)的焦点为虚轴的一个端点的双曲线的标准方程为$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{{b}^{2}}$=1(b>0),抛物线的一条与双曲线的渐近线平行的切线在y轴上的截距为-1,则p的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)在区间[-2,2]上单调递增,若f(1-m)<f(m),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设A(a,a),点P为函数y=$\frac{1}{x}$(x>0)上一动点,若PA最小为2$\sqrt{2}$,求a取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设S为满足下列条件的有理数的集合:
①若a∈S,b∈S,则a+b∈S,ab∈S;
②对任一个有理数r,三个关系r∈S,-r∈S,r=0有且仅有一个成立.
证明:S是由全体正有理数组成的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.“x,y,z成等比数列“是“y2=xz”成立的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.即不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.对一切实数x,不等式3x2+(a-4)x+3>0恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案