精英家教网 > 高中数学 > 题目详情
11.设集合U={0,1,2,3,4,5},A={1,3},B={x∈Z|x2-5x+4<0},则∁U(A∪B)=(  )
A.{0,1,2,3}B.{1,2,4}C.{0,4,5}D.{5}

分析 求出B中不等式的解集确定出B,找出A与B并集的补集即可.

解答 解:由B中不等式变形得:(x-1)(x-4)<0,x∈Z,
解得:1<x<4,x∈Z,即B={2,3},
∵U={0,1,2,3,4,5},A={1,3},
∴A∪B={1,2,3},
则∁U(A∪B)={0,4,5},
故选:C.

点评 此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知f(x)=2sin2x+$\sqrt{3}$sin2($\frac{π}{2}$-x).
(1)求f($\frac{π}{6}$)的值;
(2)求函数f(x)的最小正周期及图象的对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)是定义在区间[-1,1]上的奇函数,且f(-1)=1,若m,n∈[-1,1],m+n≠0时,有$\frac{f(m)+f(n)}{m+n}$<0.
(Ⅰ)证明:f(x)在区间[-1,1]上是单调减函数;
(Ⅱ)解不等式f(x+$\frac{1}{2}}$)<f(${\frac{1}{x-1}}$);
(Ⅲ)若f(x)≤t2-mt-1对所有x∈[-1,1],m∈[0,1]恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=ax3-bx+1,若f(-1)=3,则f(1)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,三个内角分别为A,B,C,已知sin(A+$\frac{π}{6}$)=2cosA.
(1)求角A的值;
(2)若B∈(0,$\frac{π}{3}$),且cos(A-B)=$\frac{4}{5}$,求sinB.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.E,F分别为正方形ABCD的边AD和AB的中点,则$\overrightarrow{EB}$+$\overrightarrow{FD}$=(  )
A.$\overrightarrow{AC}$B.$\frac{1}{2}$$\overrightarrow{AC}$C.$\overrightarrow{BD}$D.$\frac{1}{2}$$\overrightarrow{BD}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数y=sin(2x+φ)(0<φ<π)的图象向右平移$\frac{π}{4}$个单位后与y=sin2x的图象重合,则φ=$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1(-c,0),F2(c,0),M,N两点在双曲线上,且MN∥F1F2,|F1F2|=4|MN|,线段F1N交双曲线C于点Q,且|F1Q|=|QN|,则该双曲线的离心率为 (  )
A.$\sqrt{3}$B.2C.$\sqrt{5}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知二次函数f(x)的图象过点(0,4),对任意x满足f(2-x)=f(x),且有最小值为1.
(1)求f(x)的解析式;
(2)若f(x)在区间[3a,a+1]上不单调,求实数a的取值范围;
(3)在区间[-1,3]上,y=f(x)的图象恒在y=2x+2m+1的图象上方,试确定实数m的取值范围.

查看答案和解析>>

同步练习册答案