精英家教网 > 高中数学 > 题目详情
3.设集合A={x|x2-3x+2≤0},B={(x,y)|x∈A,y∈A},则A∩B=(  )
A.AB.BC.A∪BD.

分析 求解一元二次不等式化简集合A,可知A是数集,集合B是点集,则A∩B是空集.

解答 解:集合A={x|x2-3x+2≤0}={x|1≤x≤2},
B={(x,y)|x∈A,y∈A}={(x,y)|$\left\{\begin{array}{l}{1≤x≤2}\\{1≤y≤2}\end{array}\right.$},
∵A为数集,B为点集,
∴A∩B=∅.
故选:D.

点评 本题考查了集合的定义与运算问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.直线l与曲线y=ex相切于点A(0,1),直线l的方程是x-y+1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在平面直角坐标系xoy中,已知圆C的参数方程为$\left\{{\begin{array}{l}{x=1+2cosθ}\\{y=2sinθ}\end{array}}\right.$(θ为参数),直线l的参数方程为$\left\{{\begin{array}{l}{x=5-2t}\\{y=3-t}\end{array}}\right.$(t为参数),定点P(1,1).
(Ⅰ)以原点O为极点,x轴的非负半轴为极轴,单位长度与平面直角坐标系下的单位长度相同建立极坐标系,求圆C的极坐标方程;
(Ⅱ)已知直线l与圆C相交于A,B两点,求||PA|-|PB||的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知A,B分别为椭圆C:$\frac{x^2}{4}+\frac{y^2}{2}=1$的左、右顶点,P为椭圆C上异于A,B两点的任意一点,直线PA,PB的斜率分别记为k1,k2
(1)求k1k2
(2)过坐标原点O作与直线PA,PB平行的两条射线分别交椭圆C于点M,N,问:△MON的面积是否为定值?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.下表是某校高三一次月考5个班级的数学、物理的平均成绩:
班级12345
数学(x分)111113119125127
物理(y分)92939699100
(Ⅰ)一般来说,学生的物理成绩与数学成绩具有线性相关关系,根据上表提供的数据,求两个变量x,y的线性回归方程$\hat y=\hat bx+\hat a$;
(Ⅱ)从以上5个班级中任选两个参加某项活动,求至少有一个班级数学平均分在115分以上的概率.
附:$\hat b=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\hat a=\overline y-\hat b\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在四棱锥P-ABCD中,底面ABCD为平行四边形,AB=3,AD=2$\sqrt{2}$,∠ABC=45°,P点在底面ABCD内的射影E在线段AB上,且PE=2,BE=2EA,F为AD的中点,M在线段CD上,且CM=λCD.
(Ⅰ)当λ=$\frac{2}{3}$时,证明:平面PFM⊥平面PAB;
(Ⅱ)当平面PAM与平面ABCD所成的二面角的正弦值为$\frac{{2\sqrt{5}}}{5}$时,求四棱锥P-ABCM的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知向量$\overrightarrow m=(2acosx,sinx)$,$\overrightarrow n=(cosx,bcosx)$,函数$f(x)=\overrightarrow m•\overrightarrow n-\frac{{\sqrt{3}}}{2}$,函数f(x)在y轴上的截距为$\frac{{\sqrt{3}}}{2}$,与y轴最近的最高点的坐标是$(\frac{π}{12},1)$.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)将函数f(x)的图象向左平移φ(φ>0)个单位,再将图象上各点的纵坐标不变,横坐标伸长到原来的2倍,得到函数y=sinx的图象,求φ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某保险公司针对企业职工推出一款意外险产品,每年每人只要交少量保费,发生意外后可一次性获赔50万元.保险公司把职工从事的所有岗位共分为A、B、C三类工种,根据历史数据统计出三类工种的每赔付频率如下表(并以此估计赔付概率).
工种类别ABC
赔付频率$\frac{1}{1{0}^{5}}$$\frac{2}{1{0}^{5}}$$\frac{1}{1{0}^{4}}$
(Ⅰ)根据规定,该产品各工种保单的期望利润都不得超过保费的20%,试分别确定各类工种每张保单保费的上限;
(Ⅱ)某企业共有职工20000人,从事三类工种的人数分布比例如图,老板准备为全体职工每人购买一份此种保险,并以(Ⅰ)中计算的各类保险上限购买,试估计保险公司在这宗交易中的期望利润.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.执行如图所示的程序框图,则输出的k=(  )
A.7B.8C.9D.10

查看答案和解析>>

同步练习册答案