14£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxoyÖУ¬ÒÑÖªÔ²CµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=1+2cos¦È}\\{y=2sin¦È}\end{array}}\right.$£¨¦ÈΪ²ÎÊý£©£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=5-2t}\\{y=3-t}\end{array}}\right.$£¨tΪ²ÎÊý£©£¬¶¨µãP£¨1£¬1£©£®
£¨¢ñ£©ÒÔÔ­µãOΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«Öᣬµ¥Î»³¤¶ÈÓëÆ½ÃæÖ±½Ç×ø±êϵϵĵ¥Î»³¤¶ÈÏàͬ½¨Á¢¼«×ø±êϵ£¬ÇóÔ²CµÄ¼«×ø±ê·½³Ì£»
£¨¢ò£©ÒÑÖªÖ±ÏßlÓëÔ²CÏཻÓÚA£¬BÁ½µã£¬Çó||PA|-|PB||µÄÖµ£®

·ÖÎö £¨¢ñ£©ÓÉÔ²µÄ²ÎÊý·½³ÌÇó³öÔ²CµÄÒ»°ã·½³Ì£¬ÔÙÓÉx=¦Ñcos¦È£¬y=¦Ñsin¦È£¬ÄÜÇó³öÔ²CµÄ¼«×ø±ê·½³Ì£®
£¨¢ò£©ÒÀÌâÒâµÃµãP£¨1£¬1£©ÔÚÖ±ÏßlÉÏ£¬´Ó¶øÖ±ÏßlµÄ²ÎÊý·½³ÌÓÖ¿ÉÒÔ±íʾΪ$\left\{{\begin{array}{l}{x=1-2t}\\{y=1-t}\end{array}}\right.$£¨tΪ²ÎÊý£©£¬´úÈëÔ²CµÄÒ»°ã·½³Ì£¬µÃ5t2-2t-3=0£¬ÉèµãA£¬B·Ö±ð¶ÔÓ¦µÄ²ÎÊýΪt1£¬t2£¬ÓÉ´ËÄÜÇó³ö||PA|-|PB||µÄÖµ£®

½â´ð ½â£º£¨¢ñ£©ÒÀÌâÒâµÃÔ²CµÄÒ»°ã·½³ÌΪ£¨x-1£©2+y2=4£¬
½«x=¦Ñcos¦È£¬y=¦Ñsin¦È´úÈëÉÏʽµÃ¦Ñ2-2¦Ñcos¦È-3=0£¬
ËùÒÔÔ²CµÄ¼«×ø±ê·½³ÌΪ¦Ñ2-2¦Ñcos¦È-3=0£®¡­£¨4·Ö£©
£¨¢ò£©ÒÀÌâÒâµÃµãP£¨1£¬1£©ÔÚÖ±ÏßlÉÏ£¬
ËùÒÔÖ±ÏßlµÄ²ÎÊý·½³ÌÓÖ¿ÉÒÔ±íʾΪ$\left\{{\begin{array}{l}{x=1-2t}\\{y=1-t}\end{array}}\right.$£¨tΪ²ÎÊý£©£¬
´úÈëÔ²CµÄÒ»°ã·½³ÌΪ£¨x-1£©2+y2=4£¬µÃ5t2-2t-3=0£¬
ÉèµãA£¬B·Ö±ð¶ÔÓ¦µÄ²ÎÊýΪt1£¬t2£¬
Ôò${t_1}+{t_2}=\frac{2}{5}£¾0£¬{t_1}{t_2}=-\frac{3}{5}£¼0$£¬
ËùÒÔt1£¬t2ÒìºÅ£¬²»·ÁÉèt1£¾0£¬t2£¼0£¬
ËùÒÔ$|{PA}|=\sqrt{5}{t_1}£¬|{PB}|=-\sqrt{5}{t_2}$£¬
ËùÒÔ$|{|{PA}|-|{PB}|}|=\sqrt{5}£¨{{t_1}+{t_2}}£©=\frac{{2\sqrt{5}}}{5}$£®¡­£¨10·Ö£©

µãÆÀ ±¾Ì⿼²éÔ²µÄ¼«×ø±ê·½³ÌµÄÇ󷨣¬¿¼²éÁ½Ï߶βîµÄ¾ø¶ÔÖµµÄÇ󷨣¬¿¼²é´úÊýʽµÄȡֵ·¶Î§µÄÇ󷨣¬¿¼²é»¯¹éת»¯Ë¼Ïë¡¢º¯ÊýÓë·½³Ì˼Ï룬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÍÖÔ²C£º$\frac{x^2}{a^2}$+y2=1£¨a£¾b£¾0£©µÄ×óÓÒ½¹µãF1£¬F2£¬P·Ö±ðΪÊÇCÉÏÒìÓÚ³¤Öá¶ËµãµÄ¶¯µã£¬¡ÏF1PF2µÄƽ·ÖÏß½»xÖáÓÚµãM£¬µ±PÔÚÖáÉϵÄÉäӰΪF2ʱ£¬MǡΪOF2Öе㣮
£¨1£©ÇóCµÄ·½³Ì£»
£¨2£©¹ýµãF2ÒýPF2µÄ´¹Ïß½»Ö±Ïßl£ºx=2ÓÚµãQ£¬ÊÔÅжÏÖ±ÏßPQÓëCÊÇ·ñÓÐÆäËü¹«¹²µã£¿ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÔÚÈñ½Ç¡÷ABCÖУ¬½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬ÇÒÂú×ãacosC+ccosA=2bcosB£®
£¨1£©Çó½ÇBµÄÖµ£»
£¨2£©Çóy=2sin2A+cos£¨A-C£©µÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖª{an}ÊǵȲîÊýÁУ¬SnÊÇÆäǰnÏîºÍ£¬
£¨1£©a2=-1£¬S15=75£¬ÇóanÓëSn£»
£¨2£©a1+a2+a3+a4=124£¬an+an-1+an-2+an-3=156£¬Sn=210£¬ÇóÏîÊýn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑ֪˫ÇúÏß$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1£¨{a£¾0£¬b£¾0}£©$µÄ½¥½üÏßÓëÔ²${£¨{x-2\sqrt{2}}£©^2}+{y^2}=\frac{8}{3}$ÏàÇУ¬Ôò¸ÃË«ÇúÏßµÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£®$\frac{{\sqrt{6}}}{2}$B£®$\frac{3}{2}$C£®$\sqrt{3}$D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÒÑÖªµÈ±ÈÊýÁÐ{an}µÄ¹«±È$q=\frac{1}{2}$£¬a2=8£¬ÔòÆäǰ3ÏîºÍS3µÄֵΪ£¨¡¡¡¡£©
A£®24B£®28C£®32D£®16

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªº¯Êýf£¨x£©=|x+2|£®
£¨1£©½â²»µÈʽ2f£¨x£©£¼4-|x-1|£»
£¨2£©ÒÑÖªm+n=1£¨m£¾0£¬n£¾0£©£¬Èô²»µÈʽ$|{x-a}|-f£¨x£©¡Ü\frac{1}{m}+\frac{1}{n}$ºã³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®É輯ºÏA={x|x2-3x+2¡Ü0}£¬B={£¨x£¬y£©|x¡ÊA£¬y¡ÊA}£¬ÔòA¡ÉB=£¨¡¡¡¡£©
A£®AB£®BC£®A¡ÈBD£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªº¯Êýf£¨x£©=$\frac{{{e^x}-a}}{x}$-alnx£¬ÆäÖÐa£¾0£¬x£¾0£¬eÊÇ×ÔÈ»¶ÔÊýµÄµ×Êý£®
£¨¢ñ£©ÌÖÂÛf£¨x£©µÄµ¥µ÷ÐÔ£»
£¨¢ò£©É躯Êýg£¨x£©=$\frac{1+xlnx}{e^x}$£¬Ö¤Ã÷£º0£¼g£¨x£©£¼1£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸