【题目】已知A={x|2x2+ax+2=0},B={x|x2+3x﹣b=0},且A∩B={2}.
(1)求a,b的值;
(2)设全集U=AUB,求(UA)U(UB).
【答案】
(1)解:把x=2代入A中方程得:8+2a+2=0,
解得:a=﹣5,
把x=2代入B中方程得:4+6﹣b=0,
解得:b=10
(2)解:由(1)得:A={ ,2},B={﹣5,2},
∴全集U=A∪B={﹣5, ,2},
∴UA={﹣5},UB={ },
则(UA)U(UB)={﹣5, }
【解析】(1)根据A与B的交集中元素2,代入A与B的方程中计算即可求出a与b的值;(2)把a与b的值代入确定出A与B,即可求出A补集与B补集的交集.
【考点精析】根据题目的已知条件,利用交、并、补集的混合运算的相关知识可以得到问题的答案,需要掌握求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法.
科目:高中数学 来源: 题型:
【题目】如图四边形ABCD,AB=BD=DA=2.BC=CD= ,现将△ABD沿BD折起,使二面角A﹣BD﹣C的大小在[ , ],则直线AB与CD所成角的余弦值取值范围是( )
A.[0, ]∪( ,1)
B.[ , ]
C.[0, ]
D.[0, ]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在几何体P﹣ABCD中,平面ABCD⊥平面PAB,四边形ABCD为矩形,△PAB为正三角形,若AB=2,AD=1,E,F 分别为AC,BP中点.
(Ⅰ)求证EF∥平面PCD;
(Ⅱ)求直线DP与平面ABCD所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】今年入秋以来,某市多有雾霾天气,空气污染较为严重.市环保研究所对近期每天的空气污染情况进行调査研究后发现,每一天中空气污染指数与f(x)时刻x(时)的函数关系为f(x)=|log25(x+1)﹣a|+2a+1,x∈[0,24],其中a为空气治理调节参数,且a∈(0,1).
(1)若a= ,求一天中哪个时刻该市的空气污染指数最低;
(2)规定每天中f(x)的最大值作为当天的空气污染指数,要使该市每天的空气污染指数不超过3,则调节参数a应控制在什么范围内?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆C: 的离心率e= ,左顶点M到直线 =1的距离d= ,O为坐标原点.
(1)求椭圆C的方程;
(2)设直线l与椭圆C相交于A,B两点,若以AB为直径的圆经过坐标原点,证明:点O到直线AB的距离为定值;
(3)在(2)的条件下,试求△AOB的面积S的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com