精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=2 sin( ωx)cos( ωx)+2cos2 ωx)(ω>0),且函数f(x)的最小正周期为π.
(1)求ω的值;
(2)求f(x)在区间 上的最大值和最小值.

【答案】
(1)解:因为函数f(x)=2 sin( ωx)cos( ωx)+2cos2 ωx),

所以

又f(x)的最小正周期为 ,所以 = ,即 =2.


(2)解:由(1)可知

因为 ,所以

由正弦函数的性质可知,当 ,即 时,函数f(x)取得最大值,最大值为f( )=3;

时,即 时,函数f(x)取得最小值,最小值为f( )=0


【解析】(1)利用二倍角公式化简函数的解析式,利用函数的周期即可求ω的值;(2)通过x的范围 ,求出相位的范围,利用正弦函数的性质求解函数的最大值和最小值
【考点精析】关于本题考查的三角函数的最值,需要了解函数,当时,取得最小值为;当时,取得最大值为,则才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线系方程(其中为参数).当时,直线与两坐标轴所围成的三角形的面积为__________,若该直线系中的三条直线围成正三角形区域,则区域的面积为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,已知A(5,-2),B(7,3),且AC边的中点My轴上,BC的中点Nx轴上.

(1)求点C的坐标

(2)边上的中线所在直线方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=xlnx-a(x-1)2-x,g(x)=lnx-2a(x-1),其中常数a∈R.
(Ⅰ)讨论g(x)的单调性;
(Ⅱ)当a>0时,若f(x)有两个零点x1 , x2(x1<x2),求证:在区间(1,+∞)上存在f(x)的极值点x0 , 使得x0lnx0+lnx0-2x0>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}中,定义:dn=an+2+an﹣2an+1(n≥1),a1=1.
(1)若dn=an , a2=2,求an
(2)若a2=﹣2,dn≥1,求证此数列满足an≥﹣5(n∈N*);
(3)若|dn|=1,a2=1且数列{an}的周期为4,即an+4=an(n≥1),写出所有符合条件的{dn}.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在2015﹣2016赛季CBA联赛中,某队甲、乙两名球员在前10场比赛中投篮命中情况统计如下表(注:表中分数 ,N表示投篮次数,n表示命中次数),假设各场比赛相互独立.

1

2

3

4

5

6

7

8

9

10

根据统计表的信息:
(1)从上述比赛中等可能随机选择一场,求甲球员在该场比赛中投篮命中率大于0.5的概率;
(2)试估计甲、乙两名运动员在下一场比赛中恰有一人命中率超过0.5的概率;
(3)在接下来的3场比赛中,用X表示这3场比赛中乙球员命中率超过0.5的场次,试写出X的分布列,并求X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是异面直线,则以下四个命题:存在分别经过直线的两个互相垂直的平面;存在分别经过直线的两个平行平面;经过直线有且只有一个平面垂直于直线经过直线有且只有一个平面平行于直线其中正确的个数有(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前n项和.求:

I)求数列的通项公式;

II)求数列的前n项和

III)求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着手机的发展,“微信”越来越成为人们交流的一种方式.某机构对“使用微信交流”的态度进行调查,随机抽取了50人,他们年龄的频数分布及对“使用微信交流”赞成人数如下表.

年龄(单位:岁)

频数

5

10

15

10

5

5

赞成人数

5

10

12

7

2

1

(Ⅰ)若以“年龄”45岁为分界点,由以上统计数据完成下面 列联表,并判断是否有99%的把握认为“使用微信交流”的态度与人的年龄有关;

年龄不低于45岁的人数

年龄低于45岁的人数

合计

赞成

不赞成

合计

(Ⅱ)若从年龄在 的被调查人中按照分层抽样的方法选取6人进行追踪调查,并给予其中3人“红包”奖励,求3人中至少有1人年龄在 的概率.
参考数据如下:
附临界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

的观测值: (其中

查看答案和解析>>

同步练习册答案