【题目】为了了解学生考试时的紧张程度,现对100名同学进行评估,打分区间为
,得到频率分布直方图如下,其中
成等差数列,且
.
![]()
(1)求
的值;
(2)现采用分层抽样的方式从紧张度值在
,
中共抽取5名同学,再从这5名同学中随机抽取2人,求至少有一名同学是紧张度值在
的概率.
科目:高中数学 来源: 题型:
【题目】【选修4-4:坐标系与参数方程】
在直角坐标系
中,曲线
的参数方程为
(
为参数),以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(Ⅰ)求曲线
的极坐标方程和
的直角坐标方程;
(Ⅱ)直线
与曲线
分别交于第一象限内的
,
两点,求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+(x-1)|x-a|.
(1)若a=-1,解方程f(x)=1;
(2)若函数f(x)在R上单调递增,求实数a的取值范围;
(3)是否存在实数a,使不等式f(x)≥2x-3对任意x∈R恒成立?若存在,求出a的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面
个说法中正确的序号为_____.
①函数
有两个零点;
②函数
的图象关于点
对称;
③若
是第三象限角,则
的取值集合为
;
④锐角三角形
中一定有
;
⑤已知
(
且
),同一平面内有
、
、
、
四个不同的点,若
,则
、
、
必定三点共线.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知函数
,点
、
分别是
的图象与
轴、
轴的交点,
、
分别是
的图象上横坐标为
、
的两点,
轴,且
、
、
三点共线.
![]()
(1)求函数
的解析式;
(2)若
,
,求
;
(3)若关于
的函数
在区间
上恰好有一个零点,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,函数
是函数
的反函数.
求函数
的解析式,并写出定义域
;
设
,判断并证明函数
在区间
上的单调性:
若
中的函数
在区间
内的图像是不间断的光滑曲线,求证:函数
在区间
内必有唯一的零点(假设为
),且
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线
的极坐标方程是
,以极点为原点,极轴为
轴的正半轴,建立平面直角坐标系,直线
过点
,倾斜角为
.
(Ⅰ)求曲线
的直角坐标方程与直线
的参数方程;
(Ⅱ)设直线
与曲线
交于
两点,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com