精英家教网 > 高中数学 > 题目详情
5.求下列函数的导数
(1)y=$\frac{1}{{x}^{4}}$ 
(2)y=$\root{5}{{x}^{3}}$.

分析 根据导数的运算法则求导即可.

解答 解:(1)y′=(x-4)′=-4•x-4-1=-4•x-5=-$\frac{4}{{x}^{5}}$.
(2)y′=(${x}^{\frac{3}{5}}$)′=$\frac{3}{5}$${x}^{-\frac{2}{5}}$=$\frac{3}{5\root{5}{{x}^{2}}}$=$\frac{3\root{5}{{x}^{3}}}{5x}$.

点评 本题考查了导数的运算法则,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.为得到函数y=cos(2x+$\frac{π}{3}$)的图象,只需将函数y=sin2x的图象(  )
A.向左平移$\frac{5π}{12}$个单位长度B.向右平移$\frac{5π}{12}$个单位长度
C.向左平移$\frac{5π}{6}$个单位长度D.向右平移$\frac{5π}{6}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设关于x的方程x2+4mx+4n=0.
(Ⅰ)若m∈{1,2,3},n∈{0,1,2},求方程有实根的概率;
(Ⅱ)若m、n∈{-2,-1,1,2},求当方程有实根时,两根异号的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆的一个焦点为F(-$\sqrt{3}$,0),其离心率为$\frac{\sqrt{3}}{2}$.
(1)求该椭圆的标准方程;
(2)圆x2+y2=$\frac{4}{5}$的任一条切线与该椭圆均有两个交点A、B,求证0A⊥0B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数,则(  )
A.f(-17)<f(19)<f(40)B.f(40)<f(19)<f(-17)C.f(19)<f(40)<f(-17)D.f(-17)<f(40)<f(19)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知△ABC中,A=45°,B=60°,$b=\sqrt{3}$,那么a=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知,A={x|x2<a},B={x|log2|x-1|<1},A∪B=B,则实数a的取值范围是a≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点且垂直于x轴的直线l与双曲线的渐近线围成的三角形面积为$\frac{4\sqrt{3}}{3}$,双曲线的离心率为$\frac{2}{3}$$\sqrt{3}$,则双曲线的标准方程是(  )
A.$\frac{{x}^{2}}{3}$-y2=1B.$\frac{{y}^{2}}{3}$-x2=1C.x2-$\frac{{y}^{2}}{3}$=1D.y2-$\frac{{x}^{2}}{3}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.若cos2θ+2msinθ-$\frac{5}{2}$<0恒成立,试求实数m的取值范围.

查看答案和解析>>

同步练习册答案