精英家教网 > 高中数学 > 题目详情
20.已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数,则(  )
A.f(-17)<f(19)<f(40)B.f(40)<f(19)<f(-17)C.f(19)<f(40)<f(-17)D.f(-17)<f(40)<f(19)

分析 由f(x-4)=-f(x)求出函数f(x)的周期,由奇函数的性质求出f(x)的对称轴,由条件判断出以f(x)在[2,4]上的单调性,由奇函数的性质、周期性、对称性、单调性判断出函数值的大小关系.

解答 解:由f(x-4)=-f(x)得,f(x+4)=-f(x),
则f(x+8)=f(x),函数f(x)的周期是8,
因为f(x)是定义在R上的奇函数,
所以f(x+4)=f(-x),即函数f(x)的对称轴是x=2,
因为f(x)在区间[0,2]上是增函数,
所以f(x)在[2,4]上是减函数,
因为f(-17)=-f(17)=-f(1),
f(19)=f(16+3)=f(3)=f(1)>0,f(40)=f(0)=0,
所以f(-17)<f(40)<f(19),
故选:D.

点评 本题考查函数的奇偶性、周期性、单调性、周期性的综合应用,考查化简、变形能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.(a-4)2+|2-b|=0,则ab=16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知f(x)=2sin$\frac{x}{2}(\sqrt{3}cos\frac{x}{2}-sin\frac{x}{2})+1$
(Ⅰ)若$x∈[\frac{π}{6},\frac{2π}{3}]$,求f(x)的值域;
(Ⅱ)在△ABC中,A为BC边所对的内角若f(A)=2,BC=1,求$\overrightarrow{AB}•\overrightarrow{AC}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆E:$\frac{{x}^{2}}{2}$+y2=1的右焦点为F,过F作互相垂直的两条直线分别与E相交于A,C和B,D四点.
(1)四边形ABCD能否成为平行四边形,请说明理由.
(2)求|AC|+|BD|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.班主任为了对本班学生的考试成绩进行分析,决定从本班24名女同学,18名男同学中随机抽取一个容量为7的样本进行分析.
(I)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可,不必计算出结果)
(Ⅱ)如果随机抽取的7名同学的数学,物理成绩(单位:分)对应如表.
 学生序号i 1 2 3 45 6 7
 数学成绩xi 60 65 70 75 85 87 90
 物理成绩yi 70 77 80 85 90 8693
若规定85分以上(包括85分)为优秀,从这7名同学中抽取3名同学,记3名同学中数学和物理成绩均为优秀的人数为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求下列函数的导数
(1)y=$\frac{1}{{x}^{4}}$ 
(2)y=$\root{5}{{x}^{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在△ABC中,三个角A、B、C所对的边分别为a、b、c.若角A、B、C成等差数列,且边a、b、c成等比数列,则△ABC的形状为等边三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在平面四边形ABCD中,AB=AD=4,BC=6,CD=2,3$\overrightarrow{AB}$•$\overrightarrow{AD}$+4$\overrightarrow{CB}$•$\overrightarrow{CD}$=0.
(Ⅰ)求四边形ABCD的面积;
(Ⅱ)求三角形ABC的外接圆半径R;
(Ⅲ)若∠APC=60°,求PA+PC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知a1=1,an+1=$\frac{{a}_{n}}{3{a}_{n}+1}$,则数列{an}的通项为an=$\frac{1}{3n-2}$.

查看答案和解析>>

同步练习册答案