精英家教网 > 高中数学 > 题目详情
在正方体ABCD-A1B1C1D1中,E、F分别是BB1,CD的中点,求证:平面ADE⊥平面A1FD1
考点:平面与平面垂直的判定
专题:空间位置关系与距离
分析:由已知得AD⊥平面DCC1D1,从而AD⊥D1F,取AB中点G,由已知条件推导出A1G⊥AE,从而D1F⊥AE,进而D1F⊥平面ADE,由此能证明平面A1FD1⊥平面ADE.
解答: 证明:因为ABCD-A1B1C1D1是正方体,
所以AD⊥平面DCC1D1
又D1F?平面DCC1D1,所以AD⊥D1F,
取AB中点G,
连接A1G、FG,因为F为CD中点,
所以FG
.
.
AD
.
.
A1D1,所以A1G∥D1F,
因为E是BB1中点,所以Rt△A1AG≌Rt△ABE,
所以∠AA1G=∠HAG,∠AHA1=90°,
即A1G⊥AE,所以D1F⊥AE,因为AD∩AE=A,
所以D1F⊥平面ADE,
所以D1F?平面A1FD1
所以平面A1FD1⊥平面ADE.
点评:本题考查平面与平面垂直的证明,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

M是双曲线
x2
6
-
y2
3
=1左支上的一点,F2是右焦点,MF2的中点为N,若|ON|=
6
2
(O为坐标原点),则M到右准线的距离是(  )
A、3
B、6
C、
3
D、
6

查看答案和解析>>

科目:高中数学 来源: 题型:

在Rt△ABC中,∠CAB=90°,AB=2,AC=
2
2
,D是线段AB的垂直平分线上的一点,D到AB的距离为2,过C的曲线E上任一点P满足|
PA
|+|
PB
|为常数.
(1)建立适当的坐标系,并求出曲线E的方程.
(2)过点D的直线l与曲线E相交于不同的两点M,N,且M点在D,N之间,若|
DM
|=λ|
DN
|,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

正四棱台的体对角线是5cm,高是3cm,求它的两条相对侧棱所确定的截面的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

某种产品按质量标准分成五个等级,等级编号x依次为1,2,3,4,5,现从一批产品中随机抽取20件,对其等级编号进行统计分析,得到频率分布表如下:
x12345
频率a0.30.35bc
(1)若所抽取的20件产品中,等级编号为4的恰有2件,等级编辑为5的恰有4件,求a,b,c的值.
(2)在(1)的条件下,将等级编辑为4的2件产品记为x1、x2,等级编辑为5的4件产品记为y1,y2,y3,y4,现从x1、x2,y1,y2,y3,y4,这6件产品中任取两件(假定每件产品被取出的可能性相同),写出所有可能的结果,并求这两件产品的等级编号恰好相同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2,g(x)=alnx+bx(a≠0)
(1)若b=0,求F(x)=f(x)-g(x)的单调区间;
(2)若a=b=1,是否存在实常数k和m,使得f(x)≥kx+m和g(x)≤kx+m恒成立?若存在,求出k和m的值;若不存在,请说明理由;
(3)若已知a>0,设G(x)=f(x)+2-g(x)有两个零点x1,x2且x1,x0,x2成等差数列,试探究G′(x0)的符号.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知t∈R,设函数f(x)=x3-
3(t+1)
2
x2+3tx+1.
(Ⅰ)若f(x)在(0,2)上无极值,求t的值;
(Ⅱ)若存在x0∈(0,2),使得f(x0)是f(x)在[0,2]上的最值,求t的取值范围;
(Ⅲ)当t=1时,若f(x)≤xex-5x2+5x-m+2(e为自然对数的底数)对任意x∈[0,+∞)恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
3
2
,过焦点且垂直于长轴的直线被椭圆截得的弦长为1,过点M(3,0)的直线与椭圆C相交于两点A,B
(1)求椭圆C的方程;
(2)设P为椭圆上一点,且满足
OA
+
OB
=
OP
(O为坐标原点),当|AB|<
3
时,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}和等比数列{bn}满足:a1+b1=3,a2+b2=7,a3+b3=15,a4+b4=35,则an+bn=
 
.(n∈N*

查看答案和解析>>

同步练习册答案