| A. | -22 | B. | $\frac{11}{3}$ | C. | 0 | D. | $\frac{11}{3}$ |
分析 利用定积分求出t,然后通过线性规划求出z=tx-$\frac{11}{3}$y的最大值.
解答 解:由$\left\{\begin{array}{l}x+y=6\\ x=\sqrt{y}\end{array}\right.$可得x=-3(舍去),x=2,
∴t=${∫}_{0}^{2}(6-x-{x}^{2}){d}_{x}$=$(6x-\frac{1}{2}{x}^{2}-\frac{1}{3}{x}^{3}){|}_{0}^{2}$=$\frac{22}{3}$.
∴z=$\frac{22}{3}$x-$\frac{11}{3}$y,约束条件$\left\{\begin{array}{l}x+y≤6\\ 0≤x≤\sqrt{y}\end{array}\right.$的可行域如图:![]()
z=$\frac{22}{3}$x-$\frac{11}{3}$y,化为y=2x-$\frac{3}{11}z$,显然y=2x-$\frac{3}{11}z$与y=x2相切时,z取得最大值.
可得2x-$\frac{3}{11}z$=x2,即:x2-2x+$\frac{3}{11}z$=0,△=4-$4×\frac{3}{11}z≥0$,可得z≤$\frac{11}{3}$.
z的最大值为:$\frac{11}{3}$.
故选:B.
点评 本题考查线性规划的应用,画出可行域以及目标函数的几何意义是解题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y≥1 | B. | x≥2 | C. | x+2y+2≥0 | D. | 2x-y+1≥0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | sina>sinb | B. | log2a<log2b | C. | a${\;}^{\frac{1}{2}}$<b${\;}^{\frac{1}{2}}$ | D. | ($\frac{1}{3}$)a<($\frac{1}{3}$)b |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com