【题目】已知圆
(
为坐标原点),直线
.
(1)过直线
上任意一点
作圆
的两条切线,切点分别为
,求四边形
面积的最小值.
(2)过点
的直线
分别与圆
交于点
(
不与
重合),若
,试问直线
是否过定点?并说明理由.
科目:高中数学 来源: 题型:
【题目】海水受日月的引力,在一定的时候发生涨落的现象叫潮,一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下面是某港口在某季节每天的时间与水深关系表:
时刻 | 2:00 | 5:00 | 8:00 | 11:00 | 14:00 | 17:00 | 20:00 | 23:00 |
水深(米) | 7.5 | 5.0 | 2.5 | 5.0 | 7.5 | 5.0 | 2.5 | 5.0 |
经长期观测,这个港口的水深与时间的关系,可近似用函数f(t)=Asin(ωt+)+b
来描述.
(1)根据以上数据,求出函数f(t)=Asin(ωt+)+b的表达式;
(2)一条货船的吃水深度(船底与水面的距离)为4.25米,安全条例规定至少要有2米的安全间隙(船底与洋底的距离),该船在一天内(0:00~24:00)何时能进入港口然后离开港口?每次在港口能停留多久?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某单位的职工食堂中,食堂每天以3元/个的价格从面包店购进面包,然后以5元/个的价格出售.如果当天卖不完,剩下的面包以1元/个的价格全部卖给饲料加工厂.根据以往统计资料,得到食堂每天面包需求量的频率分布直方图如下图所示.食堂某天购进了80个面包,以x(单位:个,
)表示面包的需求量,T(单位:元)表示利润.
![]()
(1)求食堂面包需求量的平均数;
(2)求T关于x的函数解析式;
(3)根据直方图估计利润T不少于100元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的是( )
A. 命题“若
,则
”的逆否命题为真命题
B. 命题“若
,则
”的否命题为“若
,则
”
C. 命题“
,使得
”的否定是“
,都有
”
D. 若
,则“
”是“
”的充分不必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
的四个顶点围成的四边形面积为
.
(1)求
的方程;
(2)过
的右焦点
,且斜率不为0的直线
与
交于
两点,线段
的垂直平分线经过点
,求
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本题满分12分)
一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1、2、3、4,现从盒子中随机抽取卡片.
(Ⅰ)若一次从中随机抽取3张卡片,求3张卡片上数字之和大于或等于7的概率;
(Ⅱ)若第一次随机抽取1张卡片,放回后再随机抽取1张卡片,求两次抽取的卡片中至少一次抽到数字2的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“绿水青山就是金山银山”的生态文明发展理念已经深入人心,这将推动新能源汽车产业的迅速发展.下表是2019年我国某地区新能源乘用车的前5个月销售量与月份的统计表:
月份代码 | 1 | 2 | 3 | 4 | 5 |
销售量 | 0.5 | 0.6 | 1 | 1.4 | 1.5 |
(1)利用线性相关系数
判断
与
的线性相关性,并求出线性回归方程
(2)根据线性回归方程预报2019年6月份的销售量约为多少万辆?
参考公式:
,
;回归直线:
.
,![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个口袋内有3个不同的红球,4个不同的白球
(1)从中任取3个球,红球的个数不比白球少的取法有多少种?
(2)若取一个红球记2分,取一个白球记1分,从中任取4个球,使总分不少于6分的取法有多少种?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com