精英家教网 > 高中数学 > 题目详情

【题目】

已知函数=(sin x+cos x)2+cos 2x.

(1)求函数的最小正周期;

(2)求函数在区间上的最大值和最小值.

【答案】(1) (2)f(x)上的最大值为1,最小值为0.

【解析】试题分析: 根据二倍角公式和两角和的正弦公式对化简,得到的形式,利用最小正周期计算公式即可求解

根据定义域求出的取值范围,进而得到的取值范围,从而得到函数的最值。

解析:(1)因为f(x)sin2xcos2x2sin xcos xcos 2x1sin 2xcos 2xsin1

所以函数f(x)的最小正周期Tπ.

(2)(1)知,f(x)sin1.

x时,2x

由正弦函数ysin x上的图象知,

2x,即x时,f(x)取最大值1

2x,即x时,f(x)取最小值0.

综上,f(x)上的最大值为1,最小值为0.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆E: 的焦点在 轴上,AE的左顶点,斜率为k(k>0)的直线交EA,M两点,点NE上,MANA.
(1)当t=4, 时,求△AMN的面积;
(2)当 时,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P﹣A1B1C1D1 , 下部的形状是正四棱柱ABCD﹣A1B1C1D1(如图所示),并要求正四棱柱的高O1O是正四棱锥的高PO1的4倍.

(1)若AB=6m,PO1=2m,则仓库的容积是多少?
(2)若正四棱柱的侧棱长为6m,则当PO1为多少时,仓库的容积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】成等差数列的三个正数的和等于15,并且这三个数分别加上2513后成为等比数列{bn}中的b3b4b5

)求数列{bn}的通项公式;

)数列{bn}的前n项和为Sn,求证:数列{Sn+}是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

如图所示,在多面体 中,四边形 均为正方形,点 的中点,过的平面交 于 点

(1) 证明:

(2) 求二面角 的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是(  )

A.56
B.60
C.120
D.140

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】观察下列等式:
(sin 2+(sin 2= ×1×2;
(sin 2+(sin 2+(sin 2+sin( 2= ×2×3;
(sin 2+(sin 2+(sin 2+…+sin( 2= ×3×4;
(sin 2+(sin 2+(sin 2+…+sin( 2= ×4×5;

照此规律,
(sin 2+(sin 2+(sin 2+…+(sin 2=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn=3n2+8n,{bn}是等差数列,且an=bn+bn+1
(1)求数列{bn}的通项公式;
(2)令cn= ,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在平面斜坐标系xOy中,xOy=60°,平面上任意一点P关于斜坐标系的斜坐标是这样定义的:若=xe1+ye2(其中e1,e2分别为x轴、y轴同方向的单位向量),则点P的斜坐标为(x,y).

(1)若点P在斜坐标系xOy中的斜坐标为(2,-2),求点P到原点O的距离.

(2)求以原点O为圆心,1为半径的圆在斜坐标系xOy中的方程.

查看答案和解析>>

同步练习册答案