【题目】如图所示,在平面斜坐标系xOy中,∠xOy=60°,平面上任意一点P关于斜坐标系的斜坐标是这样定义的:若=xe1+ye2(其中e1,e2分别为x轴、y轴同方向的单位向量),则点P的斜坐标为(x,y).
(1)若点P在斜坐标系xOy中的斜坐标为(2,-2),求点P到原点O的距离.
(2)求以原点O为圆心,1为半径的圆在斜坐标系xOy中的方程.
【答案】(1)2;(2)
【解析】
(1)先根据点P的斜坐标得到=2e1-2e2, 再平方求出||2=4,即点P到原点O的距离为2.(2)设圆上动点M的斜坐标为(x,y),=xe1+ye2,再平方化简得所求圆的方程为x2+y2+xy=1.
(1)因为点P的斜坐标为(2,-2), 所以=2e1-2e2,
所以||2=(2e1-2e2)2=4-8e1·e2+4=8-8×1×1×cos 60°=8-4=4,所以||=2,即点P到原点O的距离为2.
(2)设圆上动点M的斜坐标为(x,y),
则=xe1+ye2,所以(xe1+ye2)2=1,
则x2+2xye1·e2+y2=1,即x2+y2+xy=1,
故所求圆的方程为x2+y2+xy=1.
科目:高中数学 来源: 题型:
【题目】已知椭圆: ()的左右焦点分别为, ,短轴两个端点为, ,且四边形是边长为的正方形。
(1)求椭圆的方程;
(2)已知圆的方程是,过圆上任一点作椭圆的两条切线, ,求证:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在棱长为1的正方体ABCD—A1B1C1D1中,E是BC的中点,
平面B1ED交A1D1于F。
(1)指出F在A1D1上的位置,并说明理由;
(2)求直线A1C与DE所成的角的余弦值;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨)标准煤的几组对照数据:
3 | 4 | 5 | 6 | |
2.5 | 3 | 4 | 4.5 |
(1)请根据表中提供的数据,用最小二乘法求出关于的线性回归方程;
(2)已知该厂技术改造前100吨甲产品能耗为90吨标准煤,试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?
(参考:用最小二乘法求线性回归方程系数公式, )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)满足:①对任意x∈(0,+∞),恒有f(2x)=2f(x)成立;②当x∈(1,2]时,f(x)=2﹣x.若f(a)=f(2020),则满足条件的最小的正实数a的值为( )
A. 28 B. 100 C. 34 D. 36
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , an>0,且满足:(an+2)2=4Sn+4n+1,n∈N* .
(1)求a1及通项公式an;
(2)若bn=(﹣1)nan , 求数列{bn}的前n项和Tn .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com