£¨2013•ͨÖÝÇøÒ»Ä££©ÏÖÓÐÒ»×黥²»ÏàͬÇÒ´ÓСµ½´óÅÅÁеÄÊý¾Ýa0£¬a1£¬a2£¬a3£¬a4£¬a5£¬ÆäÖÐa0=0£®¼ÇT=a0+a1+a2+a3+a4+a5£¬xn=
n
5
£¬yn=
1
T
(a0+a1+¡­+an)
£¨n=0£¬1£¬2£¬3£¬4£¬5£©£¬×÷º¯Êýy=f£¨x£©£¬Ê¹ÆäͼÏóΪÖðµãÒÀ´ÎÁ¬½ÓµãPn£¨xn£¬yn£©£¨n=0£¬1£¬2£¬3£¬4£¬5£©µÄÕÛÏߣ®
£¨¢ñ£©Çóf£¨0£©ºÍf£¨1£©µÄÖµ£»
£¨¢ò£©ÉèÖ±ÏßPn-1PnµÄбÂÊΪkn£¨n=1£¬2£¬3£¬4£¬5£©£¬ÅжÏk1£¬k2£¬k3£¬k4£¬k5µÄ´óС¹ØÏµ£»
£¨¢ó£©Ö¤Ã÷£ºµ±x¡Ê£¨0£¬1£©Ê±£¬f£¨x£©£¼x£®
·ÖÎö£º£¨¢ñ£©½áºÏÒÑÖª´úÈë¿ÉÇóf£¨0£©=
a0
a0+a1+¡­+a5
£¬f£¨1£©=
a0+a1+¡­+a5
a0+a1+¡­+a5
¼´¿ÉÇó½â
£¨¢ò£©ÓÉÌâÒâ¿ÉµÃ£¬kn=
yn-yn-1
xn-xn-1
=
5
T
an
£¬½áºÏÒÑÖªa0£¼a1£¼a2£¼a3£¼a4£¼a5£¬¿ÉÅжÏ
£¨¢ó£©ÒªÖ¤Ã÷f£¨x£©£¼x£¨0£¼x£¼1£©£¬Ö»ÐèÖ¤Ã÷f£¨xn£©£¼xn£¬
·¨Ò»£º¿ÉÖ¤5£¨a1+a2+¡­+an£©=[n+£¨5-n£©]£¨a1+a2+¡­+an£©£¼nT£¬¼´¿ÉÖ¤Ã÷
·¨¶þ£ºkn£¼1ʱ£¬yn=£¨y1-y0£©+£¨y2-y1£©+¡­+£¨yn-yn-1£©
µ±kn¡Ý1ʱ£¬yn=y5-£¨y5-yn£©=1-[£¨yn+1-yn£©+£¨yn+2-yn+1£©+¡­+£¨y5-y4£©]¿ÉÖ¤Ã÷
½â´ð£º£¨¢ñ£©½â£ºf(0)=
a0
a0+a1+a2+a3+a4+a5
=0
£¬¡­£¨2·Ö£©
f(1)=
a0+a1+a2+a3+a4+a5
a0+a1+a2+a3+a4+a5
=1
£»   ¡­£¨4·Ö£©
£¨¢ò£©½â£ºkn=
yn-yn-1
xn-xn-1
=
5
T
an
£¬n=1£¬2£¬3£¬4£¬5£®   ¡­£¨6·Ö£©
ÒòΪ¡¡a0£¼a1£¼a2£¼a3£¼a4£¼a5£¬
ËùÒÔ¡¡k1£¼k2£¼k3£¼k4£¼k5£®           ¡­£¨8·Ö£©
£¨¢ó£©Ö¤£ºÓÉÓÚf£¨x£©µÄͼÏóÊÇÁ¬½Ó¸÷µãPn£¨xn£¬yn£©£¨n=0£¬1£¬2£¬3£¬4£¬5£©µÄÕÛÏߣ¬
ÒªÖ¤Ã÷f£¨x£©£¼x£¨0£¼x£¼1£©£¬Ö»ÐèÖ¤Ã÷f£¨xn£©£¼xn£¨n=1£¬2£¬3£¬4£©£®¡­£¨9·Ö£©
ÊÂʵÉÏ£¬µ±x¡Ê£¨xn-1£¬xn£©Ê±£¬f(x)=
f(xn)-f(xn-1)
xn-xn-1
•(x-xn-1)+f(xn-1)
=
xn-x
xn-xn-1
f(xn-1)+
x-xn-1
xn-xn-1
f(xn)
£¼
xn-x
xn-xn-1
xn-1+
x-xn-1
xn-xn-1
xn
=x£®
ÏÂÃæÖ¤Ã÷f£¨xn£©£¼xn£®
·¨Ò»£º¶ÔÈκÎn£¨n=1£¬2£¬3£¬4£©£¬5£¨a1+a2+¡­+an£©=[n+£¨5-n£©]£¨a1+a2+¡­+an£©¡­£¨10·Ö£©=n£¨a1+a2+¡­+an£©+£¨5-n£©£¨a1+a2+¡­+an£©¡Ün£¨a1+a2+¡­+an£©+£¨5-n£©nan¡­£¨11·Ö£©=n[a1+a2+¡­+an+£¨5-n£©an]£¼n£¨a1+a2+¡­+an+an+1+¡­+a5£©=nT¡­£¨12·Ö£©
ËùÒÔ¡¡f(xn)=
a1+a2+¡­+an
T
£¼
n
5
=xn
£®¡­£¨13·Ö£©
·¨¶þ£º¶ÔÈκÎn£¨n=1£¬2£¬3£¬4£©£¬
µ±kn£¼1ʱ£¬yn=£¨y1-y0£©+£¨y2-y1£©+¡­+£¨yn-yn-1£©=
1
5
(k1+k2+¡­+kn)£¼
n
5
=xn
£»¡­£¨10·Ö£©
µ±kn¡Ý1ʱ£¬yn=y5-£¨y5-yn£©=1-[£¨yn+1-yn£©+£¨yn+2-yn+1£©+¡­+£¨y5-y4£©]=1-
1
5
(kn+1+kn+2+¡­+k5)
£¼1-
1
5
(5-n)=
n
5
=xn
£®
×ÛÉÏ£¬f£¨xn£©£¼xn£®           ¡­£¨13·Ö£©
µãÆÀ£º±¾ÌâÒÔж¨ÒåÎªÔØÌ壬Ö÷Òª¿¼²éÁËÊýÁеÄÇóºÍ¼°Ò»¶¨µÄÍÆÀíÓëÔËËãµÄÄÜÁ¦£¬ÊÔÌâ¾ßÓÐÒ»¶¨µÄ×ÛºÏÐÔ
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ͨÖÝÇøÒ»Ä££©ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬Ôò¡°a=2bcosC¡±ÊÇ¡°¡÷ABCÊǵÈÑüÈý½ÇÐΡ±µÄ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ͨÖÝÇøÒ»Ä££©¶ÔÈÎÒâÁ½¸öʵÊýx1£¬x2£¬¶¨Òåmax(x1£¬x2)=
x1£¬x1¡Ýx2
x2£¬x1£¼x2
Èôf£¨x£©=x2-2£¬g£¨x£©=-x£¬Ôòmax£¨f£¨x£©£¬g£¨x£©£©µÄ×îСֵΪ
-1
-1
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ͨÖÝÇøÒ»Ä££©ÒÑÖªÔ²µÄÖ±½Ç×ø±ê·½³ÌΪx2+y2-2y=0£®ÔÚÒÔÔ­µãΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖáµÄ¼«×ø±êϵÖУ¬¸ÃÔ²µÄ·½³ÌΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ͨÖÝÇøÒ»Ä££©Ææº¯Êýf£¨x£©µÄ¶¨ÒåÓòΪ[-2£¬2]£¬Èôf£¨x£©ÔÚ[0£¬2]Éϵ¥µ÷µÝ¼õ£¬ÇÒf£¨1+m£©+f£¨m£©£¼0£¬ÔòʵÊýmµÄȡֵ·¶Î§ÊÇ
(-
1
2
£¬1]
(-
1
2
£¬1]
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ͨÖÝÇøÒ»Ä££©ÒÑÖªÔ²µÄ·½³ÌΪx2+y2-2x=0£¬ÔòÔ²ÐÄ×ø±êΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸