【题目】已知函数f(x)=|x﹣1|+|2x+2|,g(x)=|x+2|﹣|x﹣2a|+a.
(1)求不等式f(x)>4的解集;
(2)对x1∈R,x2∈R,使得f(x1)≥g(x2)成立,求a的取值范围.
【答案】(1)
(2)[﹣4,0]
【解析】
(1)根据绝对值的几何意义,去掉绝对值
,再分类解不等式f(x)>4.
(2)根据对x1∈R,x2∈R,使得f(x1)≥g(x2)成立,则f(x)min≥g(x)min,由(1)知, f(x)min=2,g(x)=|x+2|+|x﹣2a|+a≥|(x+2)﹣(x﹣2a)|+a=|2a+2|+a,解不等式2≥|2a+2|+a即可.
(1)因为
,
所以f(x)>4即为
或
或
,
解得
或x>1,
所以不等式的解集为
;
(2)由(1)知,当x=﹣1时,f(x)min=2,g(x)=|x+2|+|x﹣2a|+a≥|(x+2)﹣(x﹣2a)|+a=|2a+2|+a,
由题意,对x1∈R,x2∈R,使得f(x1)≥g(x2)成立,
故f(x)min≥g(x)min,
即2≥|2a+2|+a,
所以![]()
解得﹣4≤a≤0,
所以实数a的取值范围为[﹣4,0].
科目:高中数学 来源: 题型:
【题目】一个口袋中有4个白球,2个黑球,每次从袋中取出一个球.
(1)若有放回的取2次球,求第二次取出的是黑球的概率;
(2)若不放回的取2次球,求在第一次取出白球的条件下,第二次取出的是黑球的概率;
(3)若有放回的取3次球,求取出黑球次数
的分布列及
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在三棱锥
中,
,
分别是线段
,
的中点,底面
是正三角形,延长
到点
,使得
.
![]()
(1)
为线段
上确定一点,当
平面
时,求
的值;
(2)当
平面
,且
时,求二面角
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
为平行四边形,点
在面
内的射影为
,
,点
到平面
的距离为
,且直线
与
垂直.
![]()
(Ⅰ)在棱
上找一点
,使直线
与平面
平行,并说明理由;
(Ⅱ)在(Ⅰ)的条件下,求二面角
的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点F为椭圆
(a>b>0)的一个焦点,点A为椭圆的右顶点,点B为椭圆的下顶点,椭圆上任意一点到点F距离的最大值为3,最小值为1.
(1)求椭圆的标准方程;
(2)若M、N在椭圆上但不在坐标轴上,且直线AM∥直线BN,直线AN、BM的斜率分别为k1和k2,求证:k1k2=e2﹣1(e为椭圆的离心率).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线C1的参数方程为
(θ为参数),以原点为极点,x轴非负半轴为极轴,建立极坐标系,曲线C2的极坐标方程为
.
(1)求曲线C1的极坐标方程以及曲线C2的直角坐标方程;
(2)若直线l:y=kx与曲线C1、曲线C2在第一象限交于P、Q,且|OQ|=|PQ|,点M的直角坐标为(1,0),求△PMQ的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率是
,上顶点坐标为
.
(1)求椭圆
的方程;
(2)问是否存在斜率为1的直线
与椭圆
交于
两点,
为椭圆
的右焦点,
,
的重心分别为
,且以线段
直径的圆过原点,若存在,求出直线
的方程;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com