精英家教网 > 高中数学 > 题目详情
sin
25π
12
cos
11π
6
-cos
11π
12
sin
6
的值是(  )
A、-
2
2
B、
2
2
C、-sin
π
12
D、sin
π
12
考点:两角和与差的正弦函数,运用诱导公式化简求值,两角和与差的余弦函数
专题:三角函数的求值
分析:直接利用诱导公式以及两角和与差的三角函数化简求解即可.
解答: 解:sin
25π
12
cos
11π
6
-cos
11π
12
sin
6

=sin
π
12
cos
π
6
+cos
π
12
sin
π
6

=sin(
π
12
+
π
6

=sin
π
4

=
2
2

故选:B.
点评:本题考查两角和与差的三角函数,诱导公式以及特殊角的三角函数值的求法,考查公式熟练程度.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在等比数列{an}中,a1=3,a3=27,则数列{an}的第4项为(  )
A、
1
9
B、81
C、-81
D、81或-81

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=
x+3,x>10
f(x+3),x≤10
,则f(5)的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x-b的图象与x轴的负半轴、y轴的正半轴分别相交于点A、B,且AB之间的距离为2
2
,函数g(x)=x2-x-6.
(1)求b的值;
(2)当x满足f(x)>g(x)时,求函数
|g(x)|
|f(x)|
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角△ABC中,已知角A、B、C的对边分别为a、b、c,且sin2B+
2
sinAsinC=sin2A+sin2C.
(1)求角B的大小;
(2)若a=3
2
,且最短边b=
10
,求边长c的值和△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的顶点在原点,焦点在x轴的正半轴上,直线l:y=-4x+1被抛物线C所截的两点AB的中点M的横坐标为-2.
(1)求抛物线C的方程;
(2)试问:是否存在定点M1,使过点M1的直线与抛物线C交于P,Q两点,且以PQ为直径圆过原点?

查看答案和解析>>

科目:高中数学 来源: 题型:

要造一个高与底面圆直径星等的圆柱形水桶,水桶的容积为5m3,这个水桶的底面圆半径约为多少?(π取3.14,结果精确到0.01m)

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列函数的导数:
(1)y=x3+log2x;
(2)y=xnex
(3)y=
x3-1
sinx

(4)y=(x+1)99
(5)y=2e-x
(6)y=2xsin(2x+5).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项均为正数的数列{an}的前n项和为Sn,且4Sn=an2+2an,设数列{
1
an2
}的前n项和为Tn,求证:Tn
5
32

查看答案和解析>>

同步练习册答案