精英家教网 > 高中数学 > 题目详情

【题目】设a,b,c∈(﹣∞,0),则a+ ,b+ ,c+
A.都不大于﹣2
B.都不小于﹣2
C.至少有一个不大于﹣2
D.至少有一个不小于﹣2

【答案】C
【解析】解:假设a+ ,b+ ,c+ 都大于﹣2, 即a+ >﹣2,b+ >﹣2,c+ >﹣2,
将三式相加,得a+ +b+ +c+ >﹣6,
又因为a,b,c∈(﹣∞,0),
所以a+ ≤﹣2,b+ ≤﹣2,c+ ≤﹣2,
三式相加,得a+ +b+ +c+ ≤﹣6,
所以a+ +b+ +c+ >﹣6不成立.
故选:C.
【考点精析】本题主要考查了反证法与放缩法的相关知识点,需要掌握常见不等式的放缩方法:①舍去或加上一些项②将分子或分母放大(缩小)才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数在其定义域内有两个不同的极值点.

(1)求的取值范围.

(2)设的两个极值点为,证明

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex
(Ⅰ)求曲线f(x)过O(0,0)的切线l方程;
(Ⅱ)求曲线f(x)与直线x=0,x=1及x轴所围图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某城市有一块半径为40m的半圆形O为圆心,AB为直径绿化区域,现计划对其进行改建.在AB的延长线上取点D,使OD=80m,在半圆上选定一点C,改建后的绿化区域由扇形区域AOC和三角形区域COD组成,其面积为S m2. 设∠AOC=x rad.

(1)写出S关于x的函数关系式S(x),并指出x的取值范围;

(2)张强同学说:当∠AOC=时,改建后的绿化区域面积S最大.张强同学的说法正确吗?若不正确,请求出改建后的绿化区域面积S最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(Ⅰ)求曲线在点处的切线方程

(Ⅱ)求证:

(Ⅲ)判断曲线是否位于轴下方,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过点(1,1)且与曲线y=x3相切的切线方程为(
A.y=3x﹣2
B.y= x+
C.y=3x﹣2或y= x+
D.y=3x﹣2或y= x﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】请您设计一个帐篷.它下部的形状是高为1m的正六棱柱,上部的形状是侧棱长为3m的正六棱锥(如图所示).试问当帐篷的顶点O到底面中心O1的距离为多少时,帐篷的体积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sin (2x+ ).
(1)求函数f(x)的最小正周期及其单调减区间;
(2)用“五点法”画出函数g(x)=f(x),x∈[﹣ ]的图象(完成列表格并作图),由图象研究并写出g(x)的对称轴和对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数.

(1)当时,解不等式

(2)设,若对任意,函数在区间上的最大值与最小值的差不超过1,求的取值范围.

查看答案和解析>>

同步练习册答案