【题目】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨)标准煤的几组对照数据
(1)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;
(2)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
参考公式:
科目:高中数学 来源: 题型:
【题目】△ABC的内角A,B,C所对应的边分别为a,b,c.
(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);
(Ⅱ)若a,b,c成等比数列,求cosB的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某地村庄P与村庄O的距离为千米,从村庄O出发有两条道路,经测量,的夹角为,OP与的夹角满足(其中),现要经过P修一条直路分别与道路交汇于两点,并在处设立公共设施.
(1)已知修建道路的单位造价分别为2m元/千米和m元/千米,若两段道路的总造价相等,求此时点之间的距离;
(2)考虑环境因素,需要对段道路进行翻修,段的翻修单价分别为n元/千米和元/千米,要使两段道路的翻修总价最少,试确定点的位置.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方体中,,,分别是,,的中点.
(1)求异面直线与所成角的大小;
(2)棱上是否存在点,使平面?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】流行性感冒多由病毒引起,据调查,空气相对湿度过大或过小时,都有利于一些病毒的繁殖和传播.科学测定,当空气相对湿度大于65%或小于40%时,病毒繁殖滋生较快,当空气相对湿度在45%—55%时,病毒死亡较快,现随机抽取了全国部分城市,获得了它们的空气月平均相对湿度共300个数据,整理得到数据分组及频数分布表,其中为了记录方便,将空气相对湿度在%~%时记为区间.
(I)求上述数据中空气相对湿度使病毒死亡较快的频率;
(Ⅱ)从区间[ 15,35)的数据中任取两个数据,求恰有一个数据位于[25,35)的概率;
(Ⅲ)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中空气月平均相对湿度的平均数在第几组(只需写出结论).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C:(x﹣a)2+(y﹣b)2=1(a>0)关于直线3x﹣2y=0对称,且与直线3x﹣4y+1=0相切.
(1)求圆C的方程;
(2)若直线l:y=kx+2与圆C交于M,N两点,是否存在直线l,使得(O为坐标原点)若存在,求出k的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中,正确的为________(正确序号全部填上)
(1)空间中,一个角的两边与另一个角的两边分别平行,则这两个角相等或互补;
(2)一个二面角的两个半平面与另一个二面角的两个半平面分别垂直,则这两个二面角相等或互补;
(3)直线,为异面直线,所成角的大小为,过空间一点作直线,使l与直线及直线都成相等的角,这样的直线可作3条;
(4)直线与平面相交,过直线可作唯一的平面与平面垂直.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年,在《我是演说家》第四季这档节目中,英国华威大学留学生游斯彬的“数学之美”的演讲视频在微信朋友圈不断被转发,他的视角独特,语言幽默,给观众留下了深刻的印象.某机构为了了解观众对该演讲的喜爱程度,随机调查了观看了该演讲的140名观众,得到如下的列联表:(单位:名)
男 | 女 | 总计 | |
喜爱 | 40 | 60 | 100 |
不喜爱 | 20 | 20 | 40 |
总计 | 60 | 80 | 140 |
(1)根据以上列联表,问能否在犯错误的概率不超过0.05的前提下认为观众性别与喜爱该演讲有关.(精确到0.001)
(2)从这60名男观众中按对该演讲是否喜爱采取分层抽样,抽取一个容量为6的样本,然后随机选取两名作跟踪调查,求选到的两名观众都喜爱该演讲的概率.
附:临界值表
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.705 | 3.841 | 5.024 | 6.635 | 7.879 |
参考公式:,.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com