在平面直角坐标系xOy中,已知圆C1:(x+3)2+(y﹣1)2=4和圆C2:(x﹣4)2+(y﹣5)2=4.
(1)若直线l过点A(4,0),且被圆C1截得的弦长为2
,求直线l的方程;
(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和圆C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,试求所有满足条件的点P的坐标.
![]()
解:(1)由于直线x=4与圆C1不相交;
∴直线l的斜率存在,设l方程为:y=k(x﹣4)(1分)
圆C1的圆心到直线l的距离为d,∵l被⊙C1截得的弦长为2![]()
∴d=
=1(2分)
d=
从而k(24k+7)=0即k=0或k=﹣![]()
∴直线l的方程为:y=0或7x+24y﹣28=0(5分)
(2)设点P(a,b)满足条件,不妨设直线l1的方程为y﹣b=k(x﹣a),k≠0
则直线l2方程为:y﹣b=﹣
(x﹣a)(6分)
∵⊙C1和⊙C2的半径相等,及直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,
∴⊙C1的圆心到直线l1的距离和圆C2的圆心到直线l2的距离相等
即
=
(8分)
整理得|1+3k+ak﹣b|=|5k+4﹣a﹣bk|
∴1+3k+ak﹣b=±(5k+4﹣a﹣bk)即(a+b﹣2)k=b﹣a+3或(a﹣b+8)k=a+b﹣5
因k的取值有无穷多个,所以
或
(10分)
解得
或![]()
这样的点只可能是点P1(
,﹣
)或点P2(﹣
,
)
经检验点P1和P2满足题目条件(12分)
科目:高中数学 来源: 题型:
已知函数
定义在R上的奇函数,当
时,
,给出下列命题:
①当
时,
②函数
有2个零点
③
的解集为
④
,都有![]()
其中正确命题个数是
A.1 B.2 C.3 D.4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com