精英家教网 > 高中数学 > 题目详情
已知f(x)=lnx,g(x)=
1
2
ax2+bx(a≠0),h(x)=f(x)-g(x)
(Ⅰ)若a=3,b=2,求h(x)的极大值点;
(Ⅱ)若b=2且h(x)存在单调递减区间,求a的取值范围.
考点:利用导数研究函数的单调性,利用导数研究函数的极值
专题:导数的综合应用
分析:(Ⅰ)将a、b的值代入,可得h(x)=lnx-
3
2
x2-2x,求出其导数,再在区间(0,+∞)上讨论导数的正负,可以得出函数h(x)单调区间,进而得到h(x)的极大值点;
(Ⅱ)先求函数h(x)的解析式,因为函数h(x)存在单调递减区间,所以不等式h′(x)<0有解,通过讨论a的正负,得出h′(x)<0有解,即可得出a的取值范围.
解答: 解:(Ⅰ)∵a=3,b=2,∴h(x)=f(x)-g(x)=lnx-
3
2
x2-2x,
h′(x)=
1
x
-3x-2
=-
3x2+2x-1
x
(x>0),
令h′(x)=0,则3x2+2x-1=0,x1=-1,x2=
1
3

则当0<x<
1
3
时,h′(x)>0,则h(x)在(0,
1
3
)上为增函数,
当x>
1
3
时,h′(x)<0,则h(x)在(
1
3
,+∞)上为减函数,
则h(x)的极大值点为
1
3

(Ⅱ)∵b=2,∴h(x)=lnx-
1
2
 ax2-2x

h′(x)=
1
x
-ax-2
=-
ax2+2x-1
x

∵函数h(x)存在单调递减区间,
∴h′(x)<0有解.
即当x>0时,则ax2+2x-1>0在(0,+∞)上有解.
①当a>0时,y=ax2+2x-1为开口向上的抛物线,y=ax2+2x-1>0在(0,+∞)总有解.
②当a<0时,y=ax2+2x-1为开口向下的抛物线,而y=ax2+2x-1>0在(0,+∞)总有解,
则△=4+4a>0,且方程y=ax2+2x-1=0至少有一个正根,此时,-1<a<0
综上所述,a的取值范围为(-1,0)∪(0,+∞).
点评:本题考查了利用导数研究函数的单调性、导数的几何意义,函数与方程的讨论等,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

今年年初,我国多个地区发生了持续性大规模的雾霾天气,给我们的身体健康产生了巨大的威胁.私家车的尾气排放也是造成雾霾天气的重要因素之一,因此在生活中我们应该提倡低碳生活,少开私家车,尽量选择绿色出行方式,为预防雾霾出一份力.为此,很多城市实施了机动车车尾号限行,我市某报社为了解市区公众对“车辆限行”的态度,随机抽查了50人,将调查情况进行整理后制成下表:
年龄(岁) [15,25) [25,35) [35,45) [45,55) [55,65) [65,75]
频数 5 10 15 10 5 5
赞成人数 4 6 9 6 3 4
(Ⅰ)完成被调查人员的频率分布直方图;

(Ⅱ)若从年龄在[15,25),[25,35)的被调查者中各随机选取两人进行进行追踪调查,记选中的4人中不赞成“车辆限行”的人数为ξ,求随机变量ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2-3x+2=0},B={x|x2-2x+2m=0},若A∩B=B,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率e=
2
2
,过右焦点F且与x轴垂直的直线交椭圆于A,B两点,且|AB|=
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l:y=kx+t(t≠0)与椭圆C相交于M,N两点,直线AO平分线段MN,求△OMN的面积的最大值及此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m>n>0,试比较a=
m
1+m
,b=
n
1+n
,c=
m+n
1+m+n
的大小关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
x+y
x
1
3
+y
1
3
-
x
4
3
-y
4
3
x
2
3
-y
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x(x>0),求f(f(x-1))的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x3-x2+x+1在点(1,2)处的切线与函数g(x)=x2-x围成的图形的面积等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1,F2分别为双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点,A为双曲线的左顶点,以F1F2为直径的圆交双曲线某条渐近线于M、N两点,若∠MAN=135°,则该双曲线的离心率为
 

查看答案和解析>>

同步练习册答案