精英家教网 > 高中数学 > 题目详情
9.直线$\left\{\begin{array}{l}{x=3-\frac{\sqrt{3}}{2}t}\\{y=1+\frac{1}{2}t}\end{array}\right.$(t为参数)的斜率为(  )
A.-$\frac{\sqrt{3}}{3}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{3}}{3}$D.$\frac{1}{2}$

分析 根据题意,将直线的参数方程变形为普通方程,由直线的方程分析可得答案.

解答 解:根据题意,直线的方程为:$\left\{\begin{array}{l}{x=3-\frac{\sqrt{3}}{2}t}\\{y=1+\frac{1}{2}t}\end{array}\right.$,
则其普通方程为:y-1=-$\frac{\sqrt{3}}{3}$(x-3),
则直线的斜率k=-$\frac{\sqrt{3}}{3}$;
故选:A.

点评 本题考查直线的参数方程,注意先将直线的参数方程变形为普通方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.数列{an}满足a1=1.a n+1=$\frac{{a}_{n}}{{a}_{n}+2}$(n∈N+).若b n+1=(n-2λ)•($\frac{1}{{a}_{n}}+1$)(n∈N+),b1=-$\frac{3}{2λ}$,且数列{bn}是单调递增数列,则实数λ的取值范围是$(\frac{1-\sqrt{13}}{4},0)$∪$(0,\frac{1+\sqrt{13}}{4})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若l1:x+(m+1)y+(m-2)=0,l2:mx+2y+8=0的图象是两条平行直线,则m的值是(  )
A.m=1或m=-2B.m=1C.m=-2D.m的值不存在

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.解答下面两个问题:
(Ⅰ)已知复数$z=-\frac{1}{2}+\frac{{\sqrt{3}}}{2}i$,其共轭复数为$\overline z$,求$|\frac{1}{z}|+{(\overline z)^2}$;
(Ⅱ)复数z1=2a+1+(1+a2)i,z2=1-a+(3-a)i,a∈R,若${z_1}+\overline{z_2}$是实数,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若直线y=kx+2与直线y=2x-1互相平行,则实数k=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x3-x2+1.
(I)求函数f(x)在点(1,f(1))处的切线方程;
(II)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知平面向量$\overrightarrow{a}$=(1,-1),$\overrightarrow{b}$=(6,-4),若$\overrightarrow{a}$⊥(t$\overrightarrow{a}$+$\overrightarrow{b}$),则实数t的值为(  )
A.10B.5C.-10D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=|x+m|+|2x-1|(m∈R).
(1)当m=-1时,求不等式f(x)≤2的解集;
(2)设关于x的不等式f(x)≤|2x+1|的解集为A,且[1,2]⊆A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.为了打好脱贫攻坚战,某贫困县农科院针对玉米种植情况进行调研,力争有效地改良玉米品种,为农民提供技术支援.现对已选出的一组玉米的茎高进行统计,获得茎叶图如图(单位:厘米),设茎高大于或等于180厘米的玉米为高茎玉米,否则为矮茎玉米.
(1)完成2×2列联表,并判断是否可以在犯错误概率不超过1%的前提下,认为抗倒伏与玉米矮茎有关?
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
(2)为了改良玉米品种,现采用分层抽样的方法从抗倒伏的玉米中抽出5株,再从这5株玉米中选取2株进行杂交试验,选取的植株均为矮茎的概率是多少?

查看答案和解析>>

同步练习册答案