精英家教网 > 高中数学 > 题目详情
1.已知平面内动点P与点A(-3,0)和点B(3,0)的连线的斜率之积为-$\frac{8}{9}$.
(1)求动点P的轨迹方程;
(2)设点P的轨迹且曲线C,过点(1,0)的直线与曲线C交于M,N两点,记△AMB的面积为S1,△ANB的面积为S2,当S1-S2取得最大值时,求$\frac{{S}_{1}}{{S}_{2}}$的值.

分析 (1)由a=3,利用椭圆的离心率公式,即可求得c,则b2=a2-c2=8,即可求得椭圆方程;
(2)设直线MN方程,代入椭圆方程,利用韦达定理,S1-S2=3丨y1丨-3丨y2丨=3丨y1+y2丨利用韦达定理及基本不等式的性质,即可求得面积最大值时,m的取值,分类讨论,分别求得y1及y2,即可求得$\frac{{S}_{1}}{{S}_{2}}$的值.

解答 解:(1)由题意可知:2a=6,则a=3,离心率e=$\frac{c}{a}$=$\frac{1}{3}$,
则c=1,b2=a2-c2=8,
∴椭圆的标准方程:$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{8}=1$;
(2)设A(x1,y1),B(x2,y2),直线MN的方程:lMN:x=my+1,
$\left\{\begin{array}{l}{x=my+1}\\{\frac{{x}^{2}}{9}+\frac{{y}^{2}}{8}=1}\end{array}\right.$,整理得:(8m2+9)y2+16my-64=0,
显然△>0,
则y1+y2=-$\frac{16m}{8{m}^{2}+9}$,y1y2=-$\frac{64}{8{m}^{2}+9}$,
S1=$\frac{1}{2}$丨AB丨×丨y1丨=3丨y1丨,同理S2=3丨y2丨,
不妨设,丨y1丨>丨y2丨,
于是S1-S2=3丨y1丨-3丨y2丨=3丨y1+y2丨=$\frac{48丨m丨}{8{m}^{2}+9}$,
当S1-S2最大时,m≠0,
则S1-S2=$\frac{48}{8丨m丨+\frac{9}{丨m丨}}$≤$\frac{48}{2\sqrt{8丨m丨•\frac{9}{丨m丨}}}$=2$\sqrt{2}$,
当且仅当8丨m丨=$\frac{9}{丨m丨}$,即m2=$\frac{9}{8}$,即m=±$\frac{3\sqrt{2}}{4}$,则S1-S2取最大值,
若m=$\frac{3\sqrt{2}}{4}$,则18y2+12$\sqrt{2}$y-64=0,
解得:y=$\frac{-2±\sqrt{34}}{3}$,y1=$\frac{-\sqrt{2}-\sqrt{34}}{3}$,y2=$\frac{-2+\sqrt{34}}{3}$,
则$\frac{{S}_{1}}{{S}_{2}}$=丨$\frac{{y}_{1}}{{y}_{2}}$丨=丨$\frac{-\sqrt{2}-\sqrt{34}}{-\sqrt{2}+\sqrt{34}}$丨=$\frac{9+\sqrt{17}}{8}$,
若m=-$\frac{3\sqrt{2}}{4}$,则18y2-12$\sqrt{2}$y-64=0,
解得:y=$\frac{\sqrt{2}±\sqrt{34}}{3}$,则y1=$\frac{\sqrt{2}+\sqrt{34}}{3}$,y2=$\frac{\sqrt{2}-\sqrt{34}}{3}$,
此时$\frac{{S}_{1}}{{S}_{2}}$=丨$\frac{{y}_{1}}{{y}_{2}}$丨=丨$\frac{\sqrt{2}+\sqrt{34}}{\sqrt{2}-\sqrt{34}}$丨=$\frac{9+\sqrt{17}}{8}$,
综上可知:$\frac{{S}_{1}}{{S}_{2}}$的值$\frac{9+\sqrt{17}}{8}$.

点评 本题考查椭圆的标准方程,直线与椭圆的位置关系,考查韦达定理及基本不等式的应用,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.设f(x)=-$\frac{1}{3}$x3+$\frac{1}{2}$x2+2ax.
(1)讨论f(x)的单调区间;
(2)若f(x)在[1,+∞)上存在单调递增区间,求a的取值范围;
(3)当0<a<2时,f(x)在[1,4]上的最小值为-$\frac{16}{3}$,求f(x)在该区间上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设向量$\overrightarrow{a}$=(1,x),$\overrightarrow{b}$=(-2,2-x),若$\overrightarrow{a}$=λ$\overrightarrow{b}$,则λ=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.数列-1,4,-9,16,-25…的一个通项公式为(  )
A.an=n2B.${a_n}={(-1)^n}{n^2}$C.${a_n}={(-1)^{n+1}}{n^2}$D.${a_n}={(-1)^n}{(n+1)^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.向量$\overrightarrow a=({-1,1}),\overrightarrow b=({1,0})$,若$({\overrightarrow a-\overrightarrow b})⊥({2\overrightarrow a+λ\overrightarrow b})$,则λ=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=-$\frac{1}{2}$x2+4x-3lnx在(t,t+1)上存在极值点,则实数t的取值范围是(0,1)∪(2,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.复数$z=\frac{{{{(i-1)}^2}+2}}{1+i}$(i为虚数单位)的实部为(  )
A.2B.1C.0D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.“?x∈R,x2+ax+1>0成立”是“|a|≤2”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设集合A={x|x2-x-2<0},集合B={x|-1<x≤1},则A∩B=(  )
A.[-1,1]B.(-1,1]C.(-1,2)D.[1,2)

查看答案和解析>>

同步练习册答案