精英家教网 > 高中数学 > 题目详情
11.如图是一个算法的伪代码,其输出的结果为$\frac{10}{11}$.

分析 模拟执行伪代码,可得伪代码的功能是计算并输出S=0+$\frac{1}{1×2}$+$\frac{1}{2×3}$+…+$\frac{1}{10×11}$的值,从而得解.

解答 解:模拟执行伪代码,可得:S=0+$\frac{1}{1×2}$+$\frac{1}{2×3}$+…+$\frac{1}{10×11}$=(1-$\frac{1}{2}$)+($\frac{1}{2}$-$\frac{1}{3}$)+…+($\frac{1}{10}$-$\frac{1}{11}$)=1-$\frac{1}{11}$=$\frac{10}{11}$.
故答案为:$\frac{10}{11}$.

点评 本题主要考查了循环结构的程序框图,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.双曲线C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F,若F关于直线y=$\sqrt{3}$x的对称点P在双曲线上,则C的离心率为(  )
A.2B.$\frac{\sqrt{5}+1}{2}$C.$\sqrt{3}$D.$\sqrt{3}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆以坐标原点为中心,坐标轴为对称轴,以抛物线y2=16x的焦点为其中一个焦点,以双曲线$\frac{{x}^{2}}{16}$$-\frac{{y}^{2}}{9}$=1的焦点为顶点.
(1)求椭圆的标准方程;
(2)若E,F是椭圆上关于原点对称的两点,P是椭圆上任意一点,则当直线PE,PF的斜率都存在,并记为kPE、kPF时,kPE•kPF是否为定值?若是,求出这个定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,角A,B,C所对的边分别为a,b,c.且C=2A,tanA=$\frac{{\sqrt{7}}}{3}$,a+c=5.
(Ⅰ)求sinA,cosA;
(Ⅱ)求b.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=mlnx-$\frac{1}{2}$x2(m∈R)满足f'(1)=1.
(1)求m的值及函数f(x)的单调区间;
(2)若函数g(x)=f(x)-($\frac{1}{2}$x2-3x+c)在[1,3]内有两个零点,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.以知f(x)是定义在区间[-1,1]上的奇函数,当x<0时,f(x)=x(x-1),则关于m的不等式f(1-m)+f(1-m2)<0的解集为[0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=(x-a)lnx-x+a,a∈R.
(1)若a=0,求函数f(x)的单调区间;
(2)若a<0,试判断函数f(x)在区间(e-2,e2)内的极值点的个数,并说明理由;
(3)求证:对任意的正数a,都存在实数t,满足:对任意的x∈(t,t+a),f(x)<a-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.己知等比数列{an}的第5项是二项式($\frac{1}{9{x}^{2}}$+x-$\frac{2}{3\sqrt{x}}$)3展开式的常数项,则a3a7=$\frac{25}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.下表给出一个等比数阵
12(  )(  )(  )a1j
36(  )(  )(  )a2j
(  )(  )(  )(  )(  )a3j
ai1ai2ai3ai4ai5aij
(  )(  )(  )(  )(  )
其中每行每列都是等比数列,aij
表示第i行第j列的数.
(1)写出a34的值并求出aij的计算公式;
(2)若数列{bn}满足bn=a2n+log2a2n,求数列{bn}的前n项和Sn

查看答案和解析>>

同步练习册答案