分析 (Ⅰ)由题意利用三角恒等变换化简f(x)的解析式,再利用三角函数图象的对称性求得函数g(x)的解析式.
(Ⅱ)利用余弦函数的定义域和值域,求得t=g(x)∈[1,2].由题意可得,即t2-mt+2=0能成立,即m=t+$\frac{2}{t}$,t∈[1,2].再利用对勾函数的单调性,求得实数m的最大值和最小值.
解答 解:(Ⅰ)∵f(x)=2$\sqrt{3}$sin($\frac{π}{4}$+$\frac{x}{2}$)•sin($\frac{π}{4}$-$\frac{x}{2}$)-sin(π+x)
=2$\sqrt{3}$sin($\frac{π}{4}$+$\frac{x}{2}$)•cos($\frac{π}{4}$+$\frac{x}{2}$)+sinx
=$\sqrt{3}$sin($\frac{π}{2}$+x)+sinx=$\sqrt{3}$cosx+sinx=2sin(x+$\frac{π}{3}$),
∵函数y=g(x)的图象与函数y=f(x)的图象关于直线x=$\frac{π}{4}$对称,
∴g(x)=f($\frac{π}{2}$-x)=2sin($\frac{π}{2}$-x+$\frac{π}{3}$)=2sin($\frac{5π}{6}$-x)=2cos($\frac{π}{3}$-x)=2cos(x-$\frac{π}{3}$).
(Ⅱ)由x∈[0,$\frac{π}{2}$),可得x-$\frac{π}{3}$∈[-$\frac{π}{3}$,$\frac{π}{6}$),∴cos(x-$\frac{π}{3}$)∈[$\frac{1}{2}$,1],∴t=g(x)∈[1,2].
若存在x∈[0,$\frac{π}{2}$),使等式[g(x)]2-mg(x)+2=0成立,即t2-mt+2=0能成立,
即m=t+$\frac{2}{t}$,t∈[1,2].
由对勾函数的单调性可得,函数m在[1,$\sqrt{2}$]上单调递减,在($\sqrt{2}$,2]上单调递增,
当t=1时,m=3;t=$\sqrt{2}$时,m=2$\sqrt{2}$,t=2时,m=3,
故实数m的最大值为3,最小值为2$\sqrt{2}$.
点评 本题主要考查三角恒等变换,三角函数图象的对称性,余弦函数的定义域和值域,函数的能成立问题,对勾函数的单调性,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | a-c<b-d | B. | ac<bd | C. | $\frac{a}{c}$$<\frac{b}{d}$ | D. | a+c<b+d |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a<b<c | B. | b<a<c | C. | c<a<b | D. | c<b<a |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
| 质量指标 值分组 | [75,85) | [85,95) | [95,105) | [105,115) | [115,125] |
| 频数 | 6 | 26 | 38 | 22 | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com