| A. | (0,1) | B. | ($\sqrt{3}$,2) | C. | (0,1)∪($\sqrt{3}$,2) | D. | (0,1)∪(1,2) |
分析 由正弦定理可知求得b,再讨论C是锐角和钝角两种情况,再分别求得b的取值范围.
解答 解:由正弦定理得$\frac{a}{sinA}=\frac{b}{sinB}$
∴b=$\frac{asinB}{sinA}$=2sinB,当B为钝角是C=$\frac{2π}{3}-B$为锐角,
∴$\frac{π}{2}<B<\frac{2π}{3}$,$\frac{\sqrt{3}}{2}<sinB<1$
∴$\sqrt{3}<b<2$
当C为锐角时,C=$\frac{2π}{3}-B$得$0<B<\frac{π}{6}$,$0<sinB<\frac{1}{2}$
∴0<b<1
∴b的取值范围为$(0,1)∪(\sqrt{3},2)$.
故答案选C.
点评 本题主要考察正弦定理,再分类讨论,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\{x|x<-\frac{1}{2}\}$ | B. | {x|x<1} | C. | $\{x|x>-\frac{1}{2}\}$ | D. | {x|x>1} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 奇函数,且在(0,+∞)上单调递减 | B. | 奇函数,且在(0,+∞)上单凋递增 | ||
| C. | 偶函数,且在(0,+∞)上单调递减 | D. | 偶函数,且在(0,+∞)上单凋递增 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 向右平行移动$\frac{π}{12}$个单位长度 | B. | 向右平行移动$\frac{π}{6}$个单位长度 | ||
| C. | 向左平行移动$\frac{π}{12}$个单位长度 | D. | 向左平移移动$\frac{π}{6}$个单位长度 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com