精英家教网 > 高中数学 > 题目详情
17.数列{an}满足a1=2,且nan+1-(n+1)an=n(n+1)
(I)求数列{an}的通项公式;
(Ⅱ)已知bn=(n+1)2,求证:$\frac{1}{{a}_{1}+{b}_{1}}$+$\frac{1}{{a}_{2}+{b}_{2}}$+…+$\frac{1}{{a}_{n}+{b}_{n}}$$<\frac{5}{12}$.

分析 (1)nan+1-(n+1)an=n(n+1),变形为$\frac{{a}_{n+1}}{n+1}$-$\frac{{a}_{n}}{n}$=1,利用等差数列的通项公式即可得出.
(2)bn=(n+1)2,可得an+bn=(n+1)(2n+1),n≥2时,$\frac{1}{{a}_{n}+{b}_{n}}$=$\frac{1}{(n+1)(2n+1)}$≤$\frac{1}{2{n}^{2}+2n}$=$\frac{1}{2}(\frac{1}{n}-\frac{1}{n+1})$,利用“裂项求和”即可得出.

解答 (1)解:∵nan+1-(n+1)an=n(n+1),∴$\frac{{a}_{n+1}}{n+1}$-$\frac{{a}_{n}}{n}$=1,
∴数列$\{\frac{{a}_{n}}{n}\}$是等差数列,首项为2,公差为1.
∴$\frac{{a}_{n}}{n}$=2+(n-1),∴an=n(n+1).
(2)证明:bn=(n+1)2
∴an+bn=(n+1)(2n+1),
∴n≥2时,$\frac{1}{{a}_{n}+{b}_{n}}$=$\frac{1}{(n+1)(2n+1)}$≤$\frac{1}{2{n}^{2}+2n}$=$\frac{1}{2}(\frac{1}{n}-\frac{1}{n+1})$,
∴$\frac{1}{{a}_{1}+{b}_{1}}$+$\frac{1}{{a}_{2}+{b}_{2}}$+…+$\frac{1}{{a}_{n}+{b}_{n}}$<$\frac{1}{6}$+$\frac{1}{2}$$[(\frac{1}{2}-\frac{1}{3})$+$(\frac{1}{3}-\frac{1}{4})$+…+$(\frac{1}{n}-\frac{1}{n+1})]$=$\frac{1}{6}+\frac{1}{2}(\frac{1}{2}-\frac{1}{n+1})$=$\frac{5}{12}$.
n=1时,也成立.
∴$\frac{1}{{a}_{1}+{b}_{1}}$+$\frac{1}{{a}_{2}+{b}_{2}}$+…+$\frac{1}{{a}_{n}+{b}_{n}}$<$\frac{5}{12}$.

点评 本题考查了递推关系、等差数列的通项公式、“放缩法”,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知点M在直线y=x上,并且到点A(5,7)的距离是10,求点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在钝角△ABC中,角A,B,C的对边分别为a,b,c,若a=$\sqrt{3}$,A=$\frac{π}{3}$,则b的取值范围为(  )
A.(0,1)B.($\sqrt{3}$,2)C.(0,1)∪($\sqrt{3}$,2)D.(0,1)∪(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知数列{an}的前n项和Sn=kn-1(k∈R),且{an}既不是等差数列,也不是等比数列,则k的值是0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=Asin(ωx+φ)(A>0,ω>0)的部分图象如图所示,则f(0)=$\frac{{\sqrt{6}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}中,an=$\left\{\begin{array}{l}{{2}^{\frac{n+1}{2}},n为奇数}\\{{2}^{\frac{n}{2}},n为偶数}\end{array}\right.$,求数列{an}的前2n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数$f(x)=asinx-\sqrt{3}cosx$关于直线$x=-\frac{π}{6}$对称,且f(x1)•f(x2)=-4,则|x1+x2|的最小值为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知全集U={-2,0,1,2},集合A={x|x2+x-2=0},则∁UA=(  )
A.{-2,1}B.{-2,0}C.{0,2}D.{0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在直角梯形ABCD中,AB∥CD,AD⊥AB,AB=4,AD=2,CD=t,P是线段CD上的动点,若$\overrightarrow{PA}$•$\overrightarrow{PB}$的最小值为0,则t的取值范围是t≥2,且t≠4,.

查看答案和解析>>

同步练习册答案