精英家教网 > 高中数学 > 题目详情
17.求$\frac{4π}{3}$的正弦,余弦,正切值.

分析 直接利用三角函数的诱导公式和特殊角的三角函数值求出结果.

解答 解:①sin$\frac{4π}{3}$=sin($π+\frac{π}{3}$)=-sin$\frac{π}{3}$=$-\frac{\sqrt{3}}{2}$,
②cos$\frac{4π}{3}$=cos($π+\frac{π}{3}$)=-cos$\frac{π}{3}$=-$\frac{1}{2}$,
③tan$\frac{4π}{3}$=tan($π+\frac{π}{3}$)=tan$\frac{π}{3}$=$\sqrt{3}$.

点评 本题考查的知识要点:三角函数的诱导公式的应用,特殊角的三角函数的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知直线2x+y+a=0与圆心为C的圆x2+y2+2x-4y-5=0相交于A,B两点,且AC⊥BC,则圆心的坐标为(-1,2);实数a的值为±5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知复数z表示的点直线y=2x上,且|z|=2$\sqrt{5}$,则z=±(2+4i).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知圆C:x2+y2+2x-3=0.
(1)若经过坐标原点且不与y轴重合的直线l与圆C相交A(x1,y1),B(x2,y2)两点,求证:$\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$为定值;
(2)斜率为1的直线m与圆C相交于D,E两点,求直线m的方程,使△CDE的面积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,A、B、C为三角形的内角,B=60°,b2=ac,则A的值为(  )
A.45°B.30°C.90°D.60°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设y=($\frac{1}{x}$)x.求dy.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知二次函数y=f(x)的图象的顶点坐标为(-1,-$\frac{1}{3}$),且过坐标原点O.数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)在二次函数y=f(x)的图象上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=anan+1cos(n+1)π,(n∈N*),数列{bn}的前n项和为Tn,若Tn≥tn2对n∈N*恒成立,求实数t的取值范围;
(Ⅲ)在数列{an}中是否存在这样一些项:an1,an2,an3,…,ank,…(1=n1<n2<n3<…<nk<…,k∈N*),这些项都能够构成以a1为首项,q(0<q<5,q∈N*)为公比的等比数列{ank},k∈N*?若存在,写出nk关于k的表达式;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\sqrt{2}$cos($\frac{π}{4}$-2x),x∈R
(1)求函数f(x)的单调递增区间;
(2)若函数f(x)的图象向右平移φ(0≤φ≤$\frac{π}{2}$)个单位长度后变为偶函数,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若幂函数f(x)的图象经过点(3,$\frac{\sqrt{3}}{3}$),则函数g(x)=$\sqrt{x}$+f(x)在[$\frac{1}{2}$,3]上的值域为(  )
A.[2,$\frac{4\sqrt{3}}{3}$]B.[2,$\frac{3\sqrt{2}}{2}$]C.(0,$\frac{4\sqrt{3}}{3}$]D.[0,+∞)

查看答案和解析>>

同步练习册答案