精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3-ax2+bx+c的图象为曲线E.
(1)若函数f(x)可以在x=-1和x=3时取得极值,求此时a,b的值;
(2)在满足(1)的条件下,f(x)<2c在x∈[-2,6]恒成立,求c的取值范围.
考点:利用导数研究函数的极值,导数在最大值、最小值问题中的应用
专题:导数的概念及应用
分析:(1)若函数f(x)可以在x=-1和x=3时取得极值,则f'(x)=3x2-2ax+b=0有两个解x=-1,x=3,易得a=3,b=-9.
(2)由(1)得f(x)=x3-3x2-9x+c,根据题意:c>x3-3x2-9x(x∈[-2,6])恒成立,令g(x)=x3-3x2-9x,令g′(x)=0,解得:x=-1,x=3,从而函数g(x)=x3-3x2-9x在[-2,-1)递增,(-1,3)递减,(3,6]递增,求出函数g(x)在x=-1时有极大值5且在端点x=6处的值为54,问题解决.
解答: 解:(1)若函数f(x)可以在x=-1和x=3时取得极值,
则f'(x)=3x2-2ax+b=0有两个解x=-1,x=3,
易得a=3,b=-9.
(2)由(1)得f(x)=x3-3x2-9x+c,
根据题意:c>x3-3x2-9x(x∈[-2,6])恒成立,
令g(x)=x3-3x2-9x,
∴g′(x)=3x2-6x-9,
令g′(x)=0,解得:x=-1,x=3,
∴g(x)在(-∞,-1),(3,+∞)上递增,在(-1,3)递减,
∴函数g(x)=x3-3x2-9x在[-2,-1)递增,(-1,3)递减,(3,6]递增,
∴函数g(x)在x=-1时有极大值5且在端点x=6处的值为54,
∴函数g(x)=x3-3x2-9x(x∈[-2,6])的最大值为54,
∴c>54.
点评:本题考察了函数的单调性,极值问题,导数的应用,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
sin2x
x2+2
.下列命题:
①f(x)为奇函数;
②函数f(x)的图象关于直线x=
π
2
对称;
③当x=
π
4
时,函数f(x)取最大值;
④函数f(x)的图象与函数y=
1
2x
的图象没有公共点;
其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

6个人照像
(1)站成一排,甲、乙相邻,共有多少种方法?
(2)站成一排,甲不在排头,乙不在排尾,共有多少种方法?
(3)站成前后两排,每排3个,前排比后排矮,共有多少种方法?

查看答案和解析>>

科目:高中数学 来源: 题型:

随着经济的发展和人们生活水平的提高,人们对健康越来越重视,某研究机构从某体检中心抽查了2000名参加体检的高中生的体重发育评价数据,如下表:
偏瘦 正常 肥胖
女生(人) 200 635 y
男生(人) x 615 z
已知从这批学生中随机抽取1人,抽到偏瘦男生的概率为0.15.
(Ⅰ)若用分层抽样的方法,从这批学生中随机抽取40人,问应在肥胖学生中抽取多少人?
(Ⅱ)已知y≥120,z≥120,求肥胖学生中男生不少于女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的离心率e=
3
2
,并且经过定点P(
3
1
2
).
(Ⅰ)求椭圆E的方程;
(Ⅱ)设A,B为椭圆E的左右顶点,P为直线l:x=4上的一动点(点P不在x轴上),连AP交椭圆于C点,连PB并延长交椭圆于D点,试问是否存在λ,使得S△ACD=λS△BCD成立,若存在,求出λ的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)焦距为2
2
,且过点(
2
,1),动直线l和椭圆C相交于A,B两点,点N为线段AB的中点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)当N的坐标为(1,1)时,求此时△AOB的面积;
(Ⅲ)设点M也是椭圆C上的一点,且满足
OM
=
3
5
OA
+
4
5
OB
,问:是否存在两个定点F1,F2使|NF1|+|NF2|为定值?若存在,求出的坐标;若不存在,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

从一箱产品中随机地抽取一件产品,设事件A=“抽到的一等品”,事件B=“抽到的二等品”,事件C=“抽到的三等品”,且已知P(A)=0.7,P(B)=0.1,P(C)=0.05,求下列事件的概率:
(1)事件D=“抽到的是一等品或二等品”;
(2)事件E=“抽到的是二等品或三等品”

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
3
2
,以椭圆C的左顶点T为圆心作圆T:(x+2)2+y2=r2(r>0),设圆T与椭圆C交于点M与点N.
(1)求椭圆C的方程;
(2)求
TM
TN
的最小值;
(3)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别与x轴交于点R,S,O为坐标原点,求|OR|+|OS|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=3,a2=1,(an+2-2)(an-2)=2(n∈N*),则该数列前2014项的和为
 

查看答案和解析>>

同步练习册答案