精英家教网 > 高中数学 > 题目详情
10.已知关于x的方程x2+ax+a-2=0.
(1)当该方程的一个根为1时,求a的值及该方程的另一根;
(2)求证:不论a取何实数,该方程都有两个不相等的实数根.
(3)设该方程的两个实数根分别为x1,x2,若2(x1+x2)+x1x2+10=0,求a的值.

分析 (1)将x=1带入方程求解a的值及该方程的另一根即可.
(2)利用判别式即可证明方程都有两个不相等的实数根.
(3)利用韦达定理求解x1+x2和x1x2的值带入2(x1+x2)+x1x2+10=0,求a的值.

解答 解:(1)方程x2+ax+a-2=0.
当x=1时,有1+a+a-2=0,解得:a=$\frac{1}{2}$.
可得2x2+x-3=0,
分解因式可得:(2x+3)(x-1)=0.
${x}_{1}=1,{x}_{2}=-\frac{3}{2}$
故得另一个根为$-\frac{3}{2}$.
(2)判别式△=b2-4ac=a2+4(2-a)=(a-2)2+4恒大于0.
∴方程都有两个不相等的实数根.
(3)根据韦达定理:x1+x2=$-\frac{b}{a}$=-a,x1x2=$\frac{c}{a}$=a-2
那么:2(x1+x2)+x1x2+10=0,即2(-a)+(a-2)+10=0,
解得:a=8.
故若2(x1+x2)+x1x2+10=0,则a的值为8.

点评 本题考查的知识点是根的分布,方程的根以及韦达定理的运用.比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知x,y满足$\left\{\begin{array}{l}{y-2≤0}\\{x+3≥0}\\{x+y+1≤0}\end{array}\right.$则x2+y2的最大值为13.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知双曲线$\frac{{x}^{2}}{(m+1)^{2}}$-$\frac{{y}^{2}}{{m}^{2}}$=1(m>0)的离心率为$\frac{{\sqrt{5}}}{2}$,P是该双曲线上的点,P在该双曲线两渐近线上的射影分别是A,B,则|PA|•|PB|的值为(  )
A.$\frac{4}{5}$B.$\frac{3}{5}$C.$\frac{4}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知一个袋中装有大小相同的4个红球,3个白球,3个黄球.若任意取出2个球,则取出的2个球颜色相同的概率是$\frac{4}{15}$;若有放回地任意取10次,每次取出一个球,每取到一个红球得2分,取到其它球不得分,则得分数X的方差为9.6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知f(x)=$\left\{\begin{array}{l}{x+5(x>1)}\\{2{x}^{2}+1(x≤1)}\end{array}\right.$,则f[f(1)]=8.如果f(x)=5,则x=-$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,角A,B,C的对边分别是a,b,c,且a=2,b=2$\sqrt{3}$,A=30°
(1)求sinB的值;
(2)求cosC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,正方体ABCD-A1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得的截面记为S. 
①当$0<CQ<\frac{1}{2}$时,S为四边形
②截面在底面上投影面积恒为定值$\frac{3}{4}$
③不存在某个位置,使得截面S与平面A1BD垂直 
④当$CQ=\frac{3}{4}$时,S与C1D1的交点满足C1R1=$\frac{1}{3}$
其中正确命题的个数为   (  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.曲线x2+y2=2(|x|+|y|)围成的图形面积是8+4π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设数列{xn}的前n项和为Sn,且4xn-Sn-3=0(n∈N*);
(1)求数列{xn}的通项公式;
(2)若数列{yn}满足yn+1-yn=xn(n∈N*),且y1=2,求满足不等式${y_n}>\frac{55}{9}$的最小正整数n的值.

查看答案和解析>>

同步练习册答案