精英家教网 > 高中数学 > 题目详情
18.已知一个袋中装有大小相同的4个红球,3个白球,3个黄球.若任意取出2个球,则取出的2个球颜色相同的概率是$\frac{4}{15}$;若有放回地任意取10次,每次取出一个球,每取到一个红球得2分,取到其它球不得分,则得分数X的方差为9.6.

分析 任意取出2个球,基本事件总数n=${C}_{10}^{2}$=45,取出的2个球颜色相同包含的基本事件个数m=${C}_{4}^{2}+{C}_{3}^{2}+{C}_{3}^{2}$=12,由此能求出取出的2个球颜色相同的概率;有放回地任意取10次,每次取出一个球,每取到一个红球得2分,取到其它球不得分,取到红球的个数ξ~B(0.4,10),X=2ξ,由此能求出得分数X的方差.

解答 解:一个袋中装有大小相同的4个红球,3个白球,3个黄球.
任意取出2个球,基本事件总数n=${C}_{10}^{2}$=45,
取出的2个球颜色相同包含的基本事件个数m=${C}_{4}^{2}+{C}_{3}^{2}+{C}_{3}^{2}$=12,
∴取出的2个球颜色相同的概率是p=$\frac{m}{n}=\frac{12}{45}=\frac{4}{15}$.
∵有放回地任意取10次,每次取出一个球,每取到一个红球得2分,取到其它球不得分,
∴取到红球的个数ξ~B(0.4,10),
∴D(ξ)=10×0.4×0.6=2.4,
∵X=2ξ,
∴D(X)=4E(ξ)=4×2.4=9.6.
故答案为:$\frac{4}{15}$,9.6.

点评 本题考查概率的求法,考查离散型随机变量的方差的求法,是基础题,解题时要认真审题,注意二项分布的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.三棱锥P-ABC的两侧面PAB、PBC都是边长为2的正三角形,AC=$\sqrt{3}$,则二面角A-PB-C的大小为(  )
A.60°B.90°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数y=$\sqrt{{x}^{2}-2x}$(x<-1)的反函数是y=1-$\sqrt{1+{x}^{2}}$(x>$\sqrt{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知等差数列{an}中,a1=1,a2>1,a2,a4,a9成等比数列.
(1)求数列{an}的通项公式;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数y=cosx•sin2x的最小值为m,函数y=$\frac{tanx}{{2-2{{tan}^2}x}}$的最小正周期为n,则m+n的值为(  )
A.$\frac{π}{2}-\frac{{4\sqrt{3}}}{9}$B.$π-\frac{{4\sqrt{3}}}{9}$C.$\frac{π}{2}+\frac{{4\sqrt{3}}}{9}$D.$π+\frac{{4\sqrt{3}}}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图,⊙O的半径为10,弦AB的长为12,OD⊥AB,交AB于点D,交⊙O于点C,则OD=8,CD=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知关于x的方程x2+ax+a-2=0.
(1)当该方程的一个根为1时,求a的值及该方程的另一根;
(2)求证:不论a取何实数,该方程都有两个不相等的实数根.
(3)设该方程的两个实数根分别为x1,x2,若2(x1+x2)+x1x2+10=0,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设随机变量ξ服从标准正态分布N(0,1),在某项测量中,已知p(|ξ|<1.96=0.950,则ξ在(-∞,-1.96)内取值的概率为(  )
A.0.025B.0.050C.0.950D.0.975

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若点(8,4)在函数f(x)=1+logax图象上,则f(x)的反函数为f-1(x)=2x-1..

查看答案和解析>>

同步练习册答案