精英家教网 > 高中数学 > 题目详情
5.已知f(x)=$\left\{\begin{array}{l}{x+5(x>1)}\\{2{x}^{2}+1(x≤1)}\end{array}\right.$,则f[f(1)]=8.如果f(x)=5,则x=-$\sqrt{2}$.

分析 先求出f(1)=2×12+1=3,从而f[f(1)]=f(3),由此能求出f[f(1)];由f(x)=5,得:当x>1时,f(x)=x+5=5;当x≤1时,f(x)=2x2+1=5,由此能求出x的值.

解答 解:∵f(x)=$\left\{\begin{array}{l}{x+5(x>1)}\\{2{x}^{2}+1(x≤1)}\end{array}\right.$,
∴f(1)=2×12+1=3,
f[f(1)]=f(3)=3+5=8.
∵f(x)=5,
∴当x>1时,f(x)=x+5=5,解得x=0,不成立;
当x≤1时,f(x)=2x2+1=5,解得x=-$\sqrt{2}$或x=$\sqrt{2}$(舍).
综上,x=-$\sqrt{2}$.
故答案为:8,-$\sqrt{2}$.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.若a=2${\;}^{\frac{1}{3}}$,b=ln2,c=log5sin$\frac{4π}{5}$,则(  )
A.c>a>bB.b>a>cC.a>b>cD.b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知x,y都是实数,命题p:x=0;命题q:x2+y2=0,则p是q的(  )
A.充要条件B.必要不充分条件
C.充分不必要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数y=cosx•sin2x的最小值为m,函数y=$\frac{tanx}{{2-2{{tan}^2}x}}$的最小正周期为n,则m+n的值为(  )
A.$\frac{π}{2}-\frac{{4\sqrt{3}}}{9}$B.$π-\frac{{4\sqrt{3}}}{9}$C.$\frac{π}{2}+\frac{{4\sqrt{3}}}{9}$D.$π+\frac{{4\sqrt{3}}}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在Rt△ABC中,∠C=90°,$sinA=\frac{5}{13}$,则tanB的值为(  )
A.$\frac{12}{13}$B.$\frac{5}{12}$C.$\frac{13}{12}$D.$\frac{12}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知关于x的方程x2+ax+a-2=0.
(1)当该方程的一个根为1时,求a的值及该方程的另一根;
(2)求证:不论a取何实数,该方程都有两个不相等的实数根.
(3)设该方程的两个实数根分别为x1,x2,若2(x1+x2)+x1x2+10=0,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数y=x2(0≤x≤3)的最大值、最小值分别是(  )
A.9和-1B.9和1C.9和0D.1和0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.圆x2+y2-2x-2y-2=0和圆x2+y2+6x-2y+6=0的公切线条数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某中学的高一、高二、高三共有学生1350人,其中高一500人,高三比高二少50人,为了解该校学生健康状况,现采用分层抽样方法进行调查,在抽取的样本中有高一学生120人,则该样本中的高二学生人数为(  )
A.80B.96C.108D.110

查看答案和解析>>

同步练习册答案