精英家教网 > 高中数学 > 题目详情
6.定义m⊕n=nm(m>0,n>0),已知数列{an}满足an=$\frac{n⊕3}{3⊕n}$(n∈N*),若对任意正整数n,都有an≥${a_{n_0}}$(n0∈N*),则${a_{n_0}}$的值为(  )
A.3B.$\frac{9}{8}$C.1D.$\frac{8}{9}$

分析 由题意可得:an=$\frac{n⊕3}{3⊕n}$=$\frac{{3}^{n}}{{n}^{3}}$,$\frac{{a}_{n+1}}{{a}_{n}}$=$3(1-\frac{1}{n+1})^{3}$=f(n),可知:f(n)关于n单调递增,经过假设可得:a1>a2>a3<a4<a5<…,即可得出.

解答 解:由题意可得:an=$\frac{n⊕3}{3⊕n}$=$\frac{{3}^{n}}{{n}^{3}}$,
$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{{3}^{n+1}}{(n+1)^{3}}$×$\frac{{n}^{3}}{{3}^{n}}$=$3(1-\frac{1}{n+1})^{3}$=f(n),则f(n)关于n单调递增,
n=1时,f(1)=$\frac{3}{8}$<1;n=2时,f(2)=$\frac{8}{9}$<1;n≥3时,f(n)>1.
∴a1>a2>a3<a4<a5<…,
∴n0=3时,满足:对任意正整数n,都有an≥${a_{n_0}}$(n0∈N*),
${a}_{{n}_{0}}$=$\frac{{3}^{n}}{{3}^{3}}$=1.
故选:C.

点评 本题考查了递推关系、数列的单调性、不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.若a,b,c为直角三角形三边,c为斜边,求证:a3+b3<c3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设直线l与抛物线C:y2=4x交于A,B两点(两点可以重合),已知O为坐标原点,若直线OA和OB的倾斜角互余,则抛物线C的焦点F到直线l的距离的取值范围是(0,$\sqrt{5}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知x,y,z为正实数,求证:$\sqrt{{x}^{2}-\sqrt{3}xy+{y}^{2}}$+$\sqrt{{y}^{2}+{z}^{2}}$≥$\sqrt{{z}^{2}+zx+{x}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.试比较3n-2n与(n-2)2n+2n2的大小,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在四棱锥P-ABCD中,AD∥BC,DC⊥AD,PA⊥平面ABCD,2AD=BC=2$\sqrt{3}$,∠DAC=30°,M为PB中点.
(1)证明:AM∥平面PCD;
(2)若二面角M-PC-D的余弦值为-$\frac{{\sqrt{6}}}{4}$,求PA的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知log6a+log6b+log6c=6,其中a,b,c∈N+,若a,b,c是递增的等比数列,又b-a为一完全平方数,则a+b+c=111.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.证明命题“凸n边形内角和等于(n-2)•180°”时,n可取得第一个值是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.等比数列{an}的前n项和为Sn,且S3=39,a2=9,则公比q等于$\frac{1}{3}$或3.

查看答案和解析>>

同步练习册答案