分析 只要比较3n与(n-1)2n+2n2的大小,通过比较n=1,2,3,4,5时,两个代数式的大小,猜想结论,利用数学归纳法证明即可.
解答 解:要比较3n-2n与(n-2)2n+2n2的大小,
即比较:3n与(n-1)2n+2n2的大小,
当n=1时,3n>(n-1)2n+2n2;
当n=2,3时,3n<(n-1)2n+2n2;
当n=4,5时,3n>(n-1)2n+2n2
猜想:当n≥4时,3n>(n-1)2n+2n2,
下面用数学归纳法证明:
由上述过程可知,n=4时结论成立,
假设当n=k,(k≥4)时结论成立,即3k>(k-1)2k+2k2,
两边同乘以3得:3k+1>3[(k-1)2k+2k2]=k2k+1+2(k+1)2+[(k-3)2k+4k2-4k-2]
而(k-3)2k+4k2-4k-2=(k-3)2k+4(k2-k-2)+6=(k-3)2k+4(k-2)(k+1)+6>0
∴3k+1>((k+1)-1)2k+1+2(k+1)2
即n=k+1时结论也成立,
∴当n≥4时,3n>(n-1)2n+2n2成立.
点评 本题考查了数学归纳法的应用,证明步骤的应用,归纳推理,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | S△OBM=S△ENF+S△MNC | B. | S△OBM=S△ENF-S△MNC | ||
| C. | S△OBM+S△ENF=S△MNC | D. | S△OBM+S△ENF=2S△MNC |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 交通指数 | (0,2) | [2,4) | [4,6) | [6,8) | [8,10) |
| 级别 | 畅通 | 基本畅通 | 轻度拥堵 | 中度拥堵 | 严重拥堵 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | $\frac{9}{8}$ | C. | 1 | D. | $\frac{8}{9}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [$\frac{π}{6}$,$\frac{π}{3}$] | B. | [$\frac{π}{4}$,$\frac{π}{2}$] | C. | [$\frac{π}{12}$,$\frac{π}{2}$] | D. | [$\frac{π}{12}$,$\frac{π}{3}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{45}{2}$ | B. | 45 | C. | $\frac{135}{2}$ | D. | 90 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com