分析 由x=y=z=1时,不等式取得等号,可构造函数f(x)=$\frac{\sqrt{x}}{2x+3}$-[$\frac{1}{50}$(x-1)+$\frac{1}{5}$],x>0,求出导数,单调区间和极值,且为最值,再由不等式的可加性,即可得证.
解答 证明:构造函数f(x)=$\frac{\sqrt{x}}{2x+3}$-[$\frac{1}{50}$(x-1)+$\frac{1}{5}$],x>0,
f′(x)=$\frac{3-2x}{2\sqrt{x}(2x+3)^{2}}$-$\frac{1}{50}$,
当x∈(0,1)时,由3-2x∈(1,3),2$\sqrt{x}$(2x+3)2∈(0,50),
可得$\frac{3-2x}{2\sqrt{x}(2x+3)^{2}}$>$\frac{1}{50}$,则f′(x)>0,f(x)递增;
当x∈(1,+∞)时,f′(x)<0,f(x)递减.
可得f(x)在x=1处取得极大值,且为最大值0,
即为f(x)≤f(1)=0,
即$\frac{\sqrt{x}}{2x+3}$≤[$\frac{1}{50}$(x-1)+$\frac{1}{5}$],对x>0恒成立;
同样$\frac{\sqrt{y}}{2y+3}$≤[$\frac{1}{50}$(y-1)+$\frac{1}{5}$],对y>0恒成立;
$\frac{\sqrt{z}}{2z+3}$≤[$\frac{1}{50}$(z-1)+$\frac{1}{5}$],对x>0恒成立.
相加可得$\frac{\sqrt{x}}{2x+3}$+$\frac{\sqrt{y}}{2y+3}$+$\frac{\sqrt{z}}{2z+3}$≤$\frac{1}{50}$(x+y+z-3)+$\frac{3}{5}$=$\frac{3}{5}$.
则原不等式成立,当且仅当x=y=z=1取得等号.
点评 本题考查不等式的证明,注意运用构造函数法,运用导数求得单调区间和最值,考查不等式的性质,属于难题.
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | 4 | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | $\sqrt{2}$ | C. | $\frac{2}{3}$$\sqrt{3}$ | D. | $\frac{3}{2}$$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com