精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=|x-3|+|x-2|.
(1)若f(x)≥3-k恒成立,求k的取值范围;
(2)求不等式f(x)<3的解集.

分析 (1)根据绝对值的性质求出f(x)的最小值,从而求出k的范围即可;(2)通过讨论x的范围,求出不等式的解集即可.

解答 解:(1)若f(x)≥3-k对任意x∈R恒成立,
即(|x-3|+|x-2|)min≥3-k.
又|x-3|+|x-2|≥|x-3-x+2|=1,
(|x-3|+|x-2|)min=1≥3-k,
解得k≥2.
(2)f(x)<3,即|x-3|+|x-2|<3,
x≥3时,x-3+x-2<3,解得:3≤x<4,
2<x<3时,3-x+x-2=1<3,成立
x≤2时,3-x+2-x=5-2x<3,解得:1<x≤2,
故不等式的解集是:(1,4).

点评 本题考查了解绝对值不等式问题,考查绝对值的性质,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.如图,已知a∈[2,4],直线l1:a2x+y-4a2-2=0,l2:x+ay-4-2a=0,l1交y轴的正半轴于A,l2交x轴的正半轴于B,l1、l2相交于点C,试求四边形OACB面积的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(1)求定积分$\int_1^3{|x-2|dx}$
(2)若复数Z1=a+2i(a∈R),Z2=3-4i(i为虚数单位)且$\frac{{Z}_{1}}{{Z}_{2}}$为纯虚数,求|Z1|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知a,b,c分别为△ABC三个内角A,B,C的对边,且满足:$\sqrt{3}a=\sqrt{3}ccosB+bsinC$.
(1)求∠C的值;
(2)若$c=2\sqrt{3}$,求2a+b的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.y=sin($\frac{π}{3}$-2x)单调增区间为(  )
A.[kπ-$\frac{π}{12}$,kπ+$\frac{5}{12}$π],(k∈Z)B.[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],(k∈Z)
C.[kπ+$\frac{5}{12}$π,kπ+$\frac{11}{12}$π],(k∈Z)D.[kπ+$\frac{π}{6}$,kπ+$\frac{2}{3}$π],(k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.△ABC中,内角A,B,C的对边分别为a,b,c.已知边c=2,且asinA-asinB=2sinC-bsinB.
(1)若sinC+sin(B-A)=sin2A,求△ABC的面积;
(2)记AB边的中点为M,求|CM|的最大值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.从1,2,3,…,10中,甲乙两人各取一数(不重复),已知甲取到的数是5的倍数,则甲数大于乙数的概率为$\frac{13}{18}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若不等式a+cos2x<5-4sinx+$\sqrt{5a-4}$对一切x∈R恒成立,则实数a的取值范围是(  )
A.(1,8)B.($\frac{4}{5}$,8]C.[$\frac{4}{5}$,8)D.[$\frac{4}{5}$,2)∪(8,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆方程为:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点P(0,1),且离心率e=$\frac{{\sqrt{3}}}{2}$.
(1)求椭圆方程;
(2)过原点的直线交椭圆于B,C两点,A(1,$\frac{1}{2}$),求△ABC面积最大值.

查看答案和解析>>

同步练习册答案